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3 ABSTRACT

Naval shipboard electric power systems are transitioning from the relatively simple
distribution of ship service electric power to extremely complex integrated electric drive
(IED) systems. The optimal design of warships employing IED is presently hampered by the
lack of existing simulation computer tools for analyzing the highly coupled and controlled
electro-mechanical systems characteristic of IED. As a first step in the development of a
viable computer simulation tool, the numerical algorithm testing program WAVESIM was
creat;d)

- The key contributions of WAVESIM are the systematic treatment of waveforms as an
abstract data type, the development of the terminal description of devices, and the use of
structural %oblans in system reduction.

SMepmsents variablés by waveforms consisting of a vector of coefficients
and a waveiorm type code indicating how the coefficients should be interpreted. The
principal advantage of using waveforms over conventional discrete point methods is the
avoidance of unstable integration techniques since for most waveform types, integration and
differentiation are linear matrix operations. ¢&.___

Devices are described in WAVESIM by relanonshlps between terminal interface
variables. WAVESIM recognizes two types of terminals: normal terminals having both
potential and flow variables, and information terminals having only a potential variable. In
this manner, WAVESIM can simulate processes involving both energy transfer and control

signals.

WAVESIM extends the structural jacobian matrix concept to reflect the properties of
the dependence of system equations on system variables. The system structural jacobian -
matrix is constructed from the constitutive device structural jacobian matrices and is used to
identfiy a sequence of smaller blocks when can be solved consecutively for all the system
variables.

To demonstrate and verify the capabilities of WAVESIM, several simulations were
conducted. In all simulations, WAVESIM provide results matching data generated by other
simulation methods.
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Chapter 1 Introduction

A revolution is occurring in modern warship design. The conventional mechanical
transmission train for transferring power from the prime movers to the ships screws will be
replaced in future warship designs by an integrated electric drive (IED) system. While
electric drive is not a new concept, the IED approach differs significantly from previous
electric drive implementations in that both propulsion power and ship service power (60 HZ
440 Volts AC) are derived from the same prime movers. The resulting flexibility in the
arrangability of the ship, in the design of the electric plant, and in the power available to
combat systems provides the naval architect with many opportunities for significantly
improving the combat effectiveness of modern warships.

Designing a ship taking full advantage of the opportunities afforded by IED is not an
easy task or even obvious. The ship designer has no precedent for an IED ship let alone the
design of an IED electric plant. Instead, the designer must rely heavily on simulations of
proposed systems to evaluate the soundness of the design. For the electrical power system, a
suitable simulation environment must be capable of addressing these questions:

Will the Electric Power System Work?

This is the ultimate question which needs to be answered. Unfortunately defining
the term work is not an easy task, nor is assuring a system will work under all operating
conditions. A strict time domain simulation only provides a solution for a given set of
operating conditions. Generalizing the results of relatively few simulations to all
operating conditions is both necessary and prone to catastrophic failure. Hence more
than just a time response is usually needed.

How Will the System React to Major Disturbances and Faults?

The primary design goal for shipboard electric power systems is continuity of
power. To this end, the response of the system to abnormal events such as grounds,
stalled motors, and inadvertent opening of breakers is crucial to evalvating the success
of the electric power system design.

How Will the System React to Severe Dynamic Conditions?

A number of normal events can cause severe dynamic responses within the
system. Rapidly changing the propulsion motor speed or direction, discharging pulse
weapons, or starting large motors are all examples of normal dynamic events.
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Is the System Stable During a Given Dynamic Scenario?
One import aspect of & system that works is its stability. The system should
remain stable during all normal dynamic conditions and for as many disturbances and

faults as possible.

What is the Stability Margin?
Some measure of how stable the system is should be provided to assist in

generalizing the findings of stability about one scenario to other related scenarios.

What is the Sensitivity of the Results to Parameters?

The generation of models for a dynamic system simulation requires some
estimation of device parameters. Knowledge of the sensitivity of the simiulation results
to parameter estimation errors is crucial for correlating simulation results with what can

be expected from the physical system.

How Correct are the Answers Provided to the Above Questions?

Simulations generally use numerical methods to generate solutions. Careful
control of error propagation is very important in ensuring accurate conclusions can be
drawn from the simulation results. Some form of feedback should be provided to the
operator as to the confidence level of the results.

These requirements for performing time domain simulations of proposed and existing
electric power systems found on United States naval warships can be quite challenging. The
size, complexity, and strong coupling of components all conspire to make ¢he simulator’s
task difficult. At first glance, one would think the simulation programs designed for the
commercial power utilities would be sufficient for handling the smaller shipboard systems.
Unfortunately, this is not the case due to the following differences of the shipboard system

from commercial power systems:

Variable Frequency

Frequency cannot be assumed constant. Many IED designs have the generators,
motors, and ship service power all operating at different frequencies to optimize the
performance of individual components. Frequency changers are employed to convert
the power from one frequency to another. Even the ship service system onboard
mechanical drive ships can experience frequency fluctuations lasting up to 2 seconds.
The limited rotational intertia of the prime movers and generators allows for rapid

accelerations and decelerations of the shaft and corresponding frequency fluctuations.
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Lack of Time Scale Separation

The principal time constants of controls, machine dynamics, and electric
dynamics all fall within the same general range of milliseconds to seconds. The
practice of decomposing the problem by time scale separation often used in analyzing

commercial power systems becomes much more difficult.

Load Sharing instead of Power Scheduling

The commercial power utilities operate by scheduling the power delivered by
each of the generating units. The mismatch between scheduled power generation and
the actual load is met by a swing generator. Onboard ship however, both real and
reactive power are shared equally among all paralleled generators through the very fast
exchange of load sharing information. This fast exchange of information strongly

couples the dynamics of all the paralleled generators.

Short Electrical Distances

The distances onboard ship are so short (under 1000 ft) as to make the modelling
of transmission lines unnecessary for most simulations and to trivialize the load flow
problem which is so important to the commercial power sector. The short electrical
distances also strengthen the coupling of the various subsystems making up the

electrical power system.

Load Dynamics

Commercial utilities usually assume loads are either consuming constant real and
reactive power, or are constant impedances. Shipboard systems however, must account
for dynamics of loads such as propulsion motors, large pumps, pulsed loads, propeller
dynamics, and ship dynamics. Furthermore, the supervisory level control envisioned
for future designs may have the ability to control aspects of the loads in addition to

generation.

Tighter Control

Because a ship is relatively small, a higher level of control can be exercised over
the shipboard power system than can be exercised in the commercial power industry.
This higher level of control strengthens the dynamic coupling of components of the

system and complicates simulation efforts.

Clearly, shipboard systems are considerably different from commercial power systems;
and the inapplicability to shipboard power systems of simulation techniques developed for

commercial systems should not be surprising. Other simulation tools exist but for one or
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more reasons, all are ill-suited for simulating shipboard systems. A review of currently
available commercial software for solving lumped parameter systems reveals no program
currenty exists suitable for fulfilling the needs of simulating shipboard electric power

svstems.

Circuit Simulators

As will be discussed in following sections, circuit simulators almost universally
describe devices in terms of branch voltages and currents. The constitutive
relationships are based only on the relative difference of the terminal variables and can
not depend on the actual nodal potentials. Furthermore, the flow variables must be
conserved on the device level. While these restrictions are not of concern for electrical
networks, they are a bit constraining on electro-mechanical systems where one would
like to deal with energy trai.sformations in a device by employing equations which do
not conserve the flow variable on the device level. The torque on the input shaft of a
gearbox for example, does not equal the torque on the output shaft. Even electric
power models where the flow variable is power and the potential variable is voltage can
best be described by constitutive equation which do not enforce conserving power by
ignoring the power converted to heat through resistive losses.

Many circuit simulator also have problems modelling the transfer of information
which is common in systems employing control systems. Information has only

potentials and no flows associated with it.

Signal Analysis Software

Signal Analysis Software is often used to simulate control systems but often have
difficulty simulating energy transfer. In particular, these programs often are incapable
of solving implicit equations which are typically created by writing Kirchhoff’s Current
Law when developing systems. Instead much effort must be expended to ensure the
models have the appropriate input and output variables for a given system to be built.

Commercial Power Utility Analysis Programs

Software for analyzing commercial power universally do not apply to shipboard
systems due to several key differences. The lack of transmission lines, rotational
inertia, time scale separation of dynamics and the presence of tightly coupled control
loops are all features of the shipboard system which prevent the use of the commercial
power system analysis techniques 5] [9] [10] [11].
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General Differential Equation solvers
Most general differential equation solving programs cannot handle implicit
equations very well. While the development and interconnecting of models into
systems is possible, the process can be quite cumbersome [12] [13]. Dynamically stiff
systems also pose serious challenges to the general differential equation solvers.

Hybrid Computers

Hybrid computers for studying electrical power systems can answer many of the
desired questions for small shipboard systems. Unfortunately, hybrid computers are
very expensive and limited in the size of problems which can be addressed. Presently
the only hybrid computer in the United States suitable for shipboard power system
studies is located at Purdue University. While this machine is capable, the needs of the
IED program will require digital computer techniques for performing the desired
studies. [92] [93] [94] [95] [96]

As part of an effort to fill the need for simulating shipboard power systems, the
WAVESIM program was specially created to develop applicable simulation techniques.
Before discussing the numerical methods employed in WAVES™ 1, a review of existing
methods is appropriate.

1.1 Simulation Process

The process of simulating a physical system can be broken into three steps. First, a
system of equations describing the component device constitutive relationships as well as
the network constraints must be developed. While the network constraints are purely linear
algebraic equations, the constitutive equations can be nonlinear and dynamic. Together, a
system of nonlinear differential algebraic equations is generated. The next step is the
conversion of the system of differential algebraic equations into a sequence of purely
algebraic equations. Common integration techniques include the forward and backward
Euler methods, Trapezoidal rule integration, and the Runge-Kutta methods. Finally, the
nonlinear algebraic system is solved either through the Newton-Raphson method or through

one of several relaxation techniques.

Before describing several methods for generating and solving the system of equations
corresponding to a physical system, the difference between the branch description and
terminal description of devices should be detailed. The branch description of devices
requires all the constitutive relationships be based on the relative difference between
terminal potentials and all flows entering a device also leave the device. Hence for a two



terminal device, there is a single branch potential variable and a single branch flow variable
associated with it. In the terminal description, the potential and flow associated with each
terminal are variables. A two terminal device would then have four variables associated
with it: two flow variables and two potentials. The terminal description allows the
constitutive equations be a function of the actual values of the terminal potentials and not
only of the potential difference. In other words, the potential reference can be set at the
system level and not necessarily on the device level. Furthermore, the flows are not
required to be conserved. A gear box for example, has differing torques entering and
exiting it. The branch description method requires a four terminal model of the gear box
while the terminal description requires only two terminals. In either case the result would
be four variables describing the gearbox, but the branch description requires an explicit
declaration of the device potential reference while the terminal description uses an implicit

system wide potential reference.

Branch Description vs. Terminal Description

N Vlwil

) Vzl 112
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1.2 Developing System Equations

The normal method of describing a dynamic system is to generate a consistent set of
possibly nonlinear differential algebraic equations and arrange them into the following

canonical form:
Cx=f(x,y,u)
0=g(x,y,u)
where x is the vector of dynamic state variables, y is the vector of state variables with no

associated dynamics staes, and u is the vector of system inputs. This system of differential
algebraic equations (DAE) can be generated several different ways with the most common
being the Sparse Tableu, Modified Nodal Analysis, and the standard load flow method.

The method employed in WAVESIM does not extract the differential equations from
the device constitutive equations but instead forms a system of algebraic equations of the

form:
0= g(:f—, g,'(;i’ ui)’ -17)

where X is the vector of the system variables and g,() is a device function having subsets X;

and

u.

of x and u as arguments. The functions g() have the dynamics of the device contained
within them, but these dynamics are not expressed on the system level.
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1.2.1 Sparse Tableau Method

The Sparse Tableau method is a very general method for describing systems
employing the branch description of devices. Proposed in [4] and used in the ASTAP and
SPICE simulators [1][15][16], the Sparse Tableau method breaks the system equations and
variables each into three groups. The three sets of variables are the branch currents, branch
voltages, and the nodal voltages. The three sets of equations are the node Kirchhoff
Current Law (KCL) equations in terms of the branch currents, Branch Voltage equations
relating branch voltages to nodal voltages, and the Constitutive equations relating branch

voltages to branch currents.

Figure 1.2.1-1 RC Example: Sparse Tableau

€1 A A AR €2

0

Figure 1.2.1-1 shows an example of a simple RC charging
Tableau approach, the system variables are:

i Voltage Source branch current
iz Resistor branch current

ic Capacitor branch current

Vs Voltage Source branch voltage
Ve Resistor branch voltage

Ye Capacitor branch voltage

e, Node 1 potential (voltage)

e, Node 2 potential (voltage)

Note the reference node 0 is assigned a potential of 0.
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The KCL equations are given by:

The Branch Voltage equations are:
vs—e,=0 ve—e,=0

ve—(e,—€)=0

The Constitutive equations are:
VR - iRR = O
While the Sparse Tableau approach generates a consistent set of network equations,
the size of the system is relatively large (eight equations in eight unknowns for this

example). Furthermore, the method employs the branch description of devices which
complicates the development of electro-mechanical models.
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1.2.2 Modified Nodal Analysis

The Modified Nodal Analysis method generates a compact set of system equations
for systems of device models using branch descriptions. Modified Nodal Analysis (MNA)
was formalized in [6], described in [1][16], and employed in the circuit simulator MSINC.
The procedure consists of writing the ¥ CL equations for all but the reference node in terms
of the branch currents, replacing the branch currents wherever possible with constitutive
equations in terms of the branch voltages, appending any remaining constitutive equations,
and substituting the branch voltages with the corresponding nodal voltages.

Figure 1.2.2-1 RC Example: Modified Nodal Analysis

Figure 1.2.2-1 shows a simple example of a simple RC charging circuit, the MDA
approach would first write the KCL equations:

Substituting the constitutive relations results in:

| 1 dve
is+—v,=0 ——=%p+C—=0
R R* 7 dr
The extra constitutive equation is given by:
v’ - Vs = 0
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Substituting the nodal voltage results in the system of three equations
| de
ts+E(e,—e2)=0 -—(e,~e)+C—=0
el - VS = 0
While the Modified Nodal Analysis Method generates a compact set of equations, it

does require the use of the branch description as well as the explicit definition of flow
variables. Both restrictions can complicate teh modelling of electro-mechancial devices.
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1.2.3 Standard Load Flow

The Load Flow approach is traditionally used in the analysis of commercial power
systems. For this application, the flow variables are usually real and reactive power while
the potential variables are the voltage magnitude and phase angle. The Load Flow
approach is a variation of nodal analysis described in many papers and texts on power
systems including [14] [29] [31] [35] [49] [50] [76] [101]. The terminal description of
devices is used since power flow is not conserved on the device level (The power entering
a transmission line is not the same as the power leaving the same line). The basic
procedure is to write the KCL equations in terms of the node potentials. Nodes with ideal
potential sources are treated specially since their corresponding flow variable is not a
function of the device voltages.

Figure 1.2.3-1 RC Example : Load Flow

IRt R 1
el ——— ‘52 62
is1+ *i(n
chq
i 4V .
82* 0 'c2

Figure 1.2.3-1 shows a simple RC charging circuit using the terminal description of
the devices. A load flow approach using currents as the flow variable would result in the

following procedure:

Write the KCL Equation at nodes without potential sources

ipa+ic, =0

Substitute Constitutive relationships for the flow variables

d(ve; —vey) -

dt 0

1
E(sz = V) +C
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Substiute the nodal potentials

1 de,
—R;(ez-Vs)+C—£-=0

All the remaining variables can be calculated from the solution of this differential
equations. The load flow method definitely creates a very compact set of equations (only
one in this case) but requires the flow variables be defined explicitly in terms of the
potential variables, and must treat ideal potential sources as special exceptions. Neither of
these restrictions is attractive for a general electro-mechanical system simulator.
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1.2.4 WAVESIM Terminal Description

The method employed in this thesis is similar to Modified Nodal Analysis with the
exception that terminal potentials are used instead of branch voltages and that the
constitutive equations are only expressed on the device level and never expressed on the
system level. Potential difference equations are appendended to the system of KCL
equations to equate explicitly defined potentials with their node potentials. For the RC
example, the system variables are given by:

i, Voltage Source terminal 1 current
ics Capacitor terminal 1 current

€ Node 0 potential (voltage

e, Node 1 potential (voltage)

e Node 2 potential (voltage)

Figure 1.2.4-1: RC Example: Terminal Description

ip1 R :
e A A N\—s 2
i A\ v .
ver |l
<+ VS v 51 ©
N c2]y
152* S2 ey *iCZ
. v
10*:4:—“(;

The KCL Equations for the RC example are given by:
i + 8 _ri(€1€) =0
ic; +gR_iR2(el’e2) =0

I+ 8s is:(iss>€0) + 8¢ ico(ici»€0) =0




The Potential Difference Equations are given by:
e2 - gC_vCI (iC)v eo) =0
€, —8s us:(is;1€) =0

€~ 8¢ «lic)=0

Note that a reference device allowing for a more general method of setting the
system reference points is employed rather than a reference node. While the number of
equations is twice that of the Modified Nodal Analysis method, flows need not be
conserved on the device level. Furthermore, the system of equations is easily partitioned
into a sequence of five blocks for a more rapid solution (two 1x1 blocks, followed by a
2x2 block, followed by two more 1x1 blocks).
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1.3 Solving System Equations

As stated earlier, the standard approach to simulating a physical system is to generate
a system of differential algebraic equation of the form:

Cx =f(x,y,u)
0=g(x,y,u)

To solve this system, it must first be converted to a system of purely algebraic
equations by substituting the differential equations with discrete approximations. The time
history of a variable is expressed as a series of discrete points in time where dynamics are
expressed as algebraic relationships between the values of a variable at different discrete

times. Standard methods for performing this approximation include the forward and
backward Euler, Trapezoidal rule integration and Runge-Kutta methods.

The major problem with this approach is the dependence of the time step on the fastest
mode (smallest eigenvalue) of the dynamic system. This forces the entire system be solved
with a very fine discretization of time, even though large portions of the system are not
affected by the fast mode.

In any case, the system of nonlinear algebraic equations must be solved. The two
classes of solvers most commonly used are variations of the Newton-Raphson Method and

several relaxation methods.

1.3.1 Newton-Raphson Method

The Newton-Raphson method works well for most systems as long as the initial
guess for all of the variables are within the convergence region of the final solution. This
method is used in SPICE and ASTAP and is based on a Taylor series expansion of the

system of equations:
FxX)=0=F@x)+J(x ), +...
X =X A,
A, =T (x)F(x,)

The matrix J is called the Jacobian Matrix and its inverse must exist for the

method to work.
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1.3.2 Relaxation

Relaxation methods assign one of the system variables to each of the system
equations. After initial guesses are made for each of the variables, the variables are
updated by solving their corresponding equation assuming none of the other variables have
changed. The two most popular relaxation methods are the Gauss-Jacobi (popular with
parallel processing computers) and the Gauss-Seidel method (usually used with serial
processing computers). The Gauss-Jacobia calculates updates for all the system variables
before actually performing the update:

F(x)=0
f,-([x,',,xu, NS TIPS A l',]T) =0
The Gauss-Seidel method updates the system variables as the updates are calculated:
F(x)=0
F,.([x,_,,”,x?'“,, NS RN ...,x,,_“,x,,_,'k]r) =0
1.3.3 Waveform Relaxation

An alternate method to solving the dynamic equations system wide is to solve them
equation by equation over a given time interval. The Waveform Relaxation method
represents variables by a sequence of points representing the time history of the waveform
over a given time interval. Each variable can be discretized differently and is assigned one
of the system equations. The system equations are solved over the waveform interval for
their assigned variable with the other variables held at their current waveform values.

Waveform Relaxation works well with loosely or directionally coupled systems, but
does not work well for tightly coupled systems. The method does however, have good
multirate performance since each differential equation can be solved using a time

increment appropriate to it.
1.3.4 WAVESIM Approach

To summarize the traditional solving methods, the standard methods employing
Netwon-Raphson can handle tightly coupled systems but perform poorly with multirate
systems while waveform relaxation performs poorly with tightly coupled systems but
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efficiently solves multirate problems. Unfortunately, the shipboard systems have both
multirate and tightly coupled properties. For this reason, WAVESIM combines the
Newton-Raphson method with a waveform representation of variables.

In WAVESIM variables are represented over a time interval by a vector of
coefficients along with a type indicator for specifying how the coefficients should be
interpreted. Common interpretations include Legendre Series coefficients, Chebyshev
Series coefficients, and polynomial series coefficients. For these representations,
integration and differentiation are linear matrix operations and the issue of numerical
stability of an integration technique disappears. Waveforms can usually be converted
from one type to another with a linear matrix operation as well.

With variables represented as vectors of coefficients, the Newton-Raphson method
can be employed for solving tightly coupled systems. Good multirate performance is
achieved through the linear matrix operator for integration along with waveform
smoothing .0 average out phenomena faster than the time scale of interest.

" 1.4 Thesis Outline

This thesis focuses on developing a digital computer simulation environment suitable
for studying shipboard electric power systems. WAVESIM, a simulation program written
in the C programming language demonstrates algorithms for simulating systems of
nonlinear lumped parameter models representing the electro-mechanical components
composing an IED system. The key features of WAVESIM are:

Devices defined independent of the encompassing systems
Devices can be developed and tested without an exact knowledge of the
topology of the systems incorporating the devices.

Devices described using the Terminal Representation of devices

Device constitutive relationships are written in terms of the actual values of the
terminal potentials and not in terms of relative potentials. In this manner, device
equations can be written in terms of a system reference when such a reference level is
unambiguous. Furthermore, the flow variables are not required to be conserved on a
device level. This greatly eases the task of modelling flows which also depend on a

reference potential (power for example).
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Devices defined independent of the manner in which terminal interface variables
are expressed.

Devices can be developed w'thout specifying how the interface variables are
specified. In WAVESIM, variables can be represented many different ways, all of
which are irrelevant to the specification of the constitutive equations making up the
device.

System equations instead of the devices resolve input-output conflicts.
WAVESIM does not constrain normal terminals where energy is transferred
from having more than one output hooked together at a node.

Interface Variables represented by waveforms

Waveforms are a vector of coefficients which specify a given variable over a
given time interval instead of a single value describing the variable at a given point in
time. The waveform type determines how the coefficients should be interpreted for
generating values of the variable within the time interval. Representing variables as
waveforms has the primary benefit of removing the issue of numerical stability of
integration techniques from the simulation. Integration and differentiation are merely
operators on waveforms, no different from addition, subtraction, or any of the
trigonometric operators.

Differentiation and Integration performed on the device level instead of the
system level.

Most circuit simulators as described in the previous sections solve the
differential equations associated with device constitutive equations on a system level.
This method eases the task of evaluating the stability of linear systems but introduces
new problems. If the eigenvalues of a dynamic system are widely separated in value,
the simulation time step must be made very small for the entire system if conventional
integration techniques are employed. WAVESIM solves the differential equations on
the device level and employs waveform smoothing to remove dynamics which occur
faster than the time scale of interest.

While many of the pieces of WAVESIM are not new, several key concepts are
presented in this thesis for the first time:

The Terminal Description of devices
Instead of specifying the interface of devices by ports consisting of a potential
difference (branch voltage) and the flow through the potential difference (branch
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current), the terminal description of a device assigns a potential and a flow entering
the device for each normal terminal. Simulators based on branch voltages and
currents require all of the flow entering a device to also leave the device. In this
sense, the flow is conserved. The terminal description however, does not require
conservation of flow within a device (Conservation of flow as expressed by
Kirchhoff’s Current Law - KCL is required at connection points called nodes). The
ability to construct models which do not conserve flows can simplify models where
energy transformations occur, the reference potential is clearly known for the system
and not just for the device, and certain forms of energy are not of interest. In many
mechanical simulations for example, the amount of energy lost in friction is not of
interest to the modeler. A simulation model based on branch potentials and flows of a
device experiencing friction would be required to reject the frictional heat through one
of its branches.

The terminal description also allows for the transfer of information between
devices through information nodes and information terminals. This feature is
essential for successfully modelling many control algorithms. The ability to mix
control signals and energy transfer through flow variables within the same simulation

environment is a major advantage of the terminal description.

The Structural Jacobian method for building and reducing systems

The concept of the connection matrix for specifying the participation of system
variables in system equations is expanded to include the structural form (i.e. diagonal,
linear, nonlinear, etc.) of the dependence of the system equations on the system
variables. The codes for the structural Jacobian adhere to a simple set of algebraic
rules which can be used to construct a system structural Jacobian matrix from the
individual device structural Jacobians. The system structural Jacobian facilitates the
reduction of the numerical effort required to solve the system by identifying and
characterizing a set of smaller blocks which when sequentially solved, determine all
of the system variables. The system structural Jacobian can also be used to detect
unconnected systems and indicate possible potential reference problems.

The Systematic Treatment of Waveforms as an abstract data type

WAVESIM departs from the conventional paradigm of representing variables in
a dynamic simulation by a series of discrete points in time with a new paradigm based
on representing variables as a sequence of waveform intervals. Within each
waveform interval, the value of the waveform can be directly determined for any time
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based on a vector of coefficients, a waveform type indicator for specifying how the
vector of coefficients should be interpreted, and the time boundaries of the waveform
interval. Devices are defined independent of the waveform type of the terminal
variables. The principle advantage of using waveforms is that integration and
differentiation are simple operators. The integral of a waveform is just another
waveform. Simulation time steps are no longer controlled by the requirement for
numerical stability of the integration technique. Instead, series truncation error
control becomes the primary concem of the simulation environment. The ability to
use arbitrary waveform types and convert between types allows the modeler to use the
most appropriate waveform representation for the modeling problem.

This thesis is composed of six chapters including this introduction. Chapter Two
describes in some detail the specific properties of current shipboard electric power systems
and proposed integrated electric drive systems. Chapter Three provides a framework of
theory for developing the simulation environment WAVESIM and is broken into five
subsections. The first subsection details the Terminal Description method for modelling
devices. The second subsection demonstrates how to interconnect device models into
systems, construct the system structural Jacobian, and generate a sequence of blocks for
solving the system equations. The third subsection covers the treatment of waveforms as an
abstract data type. Solving the system of equations employing waveforms is detailed in the
fourth subsection. The fifth and final subsection of the third chapter covers modelling
techniques and considerations not covered in previous sections. The actual WAVESIM
implementation of the concepts developed in the third chapter are described in the fourth
chapter. The fifth chapter presents results of several simulations conducted with
WAVESIM. The final chapter provides an assessment of the work presented here as well as
possible future developments.

The appendices support the main chapters. Appendix A is a glossary of terms used
through out this thesis. Appendix B details some possible problems with using continuation
parameters. Appendices C and D are Load Flow examples of the terminal description
method. Appendix E provides examples of waveform types and a number of operators for
them. Appendix F presents a number of models useful for conducting shipboard power
system simulations. Finally, Appendix G details the program files making up WAVESIM.

This thesis introduces a number of new terms. To assist the reader, the first occurance
of a new term is indicated by the distinctive Helvetica typeface. MATLAB variable names

and sample sections of C programs are printed in Courier.
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Chapter 2 Shipboard Electric Systems
2.1 Typical Shipboard Electric Distribution System

The electric power systems onboard naval warships differ considerably from the
integrated power utilities found in developed countries. The differences arise from the
small size of the shipboard systems and contrasting standards for optimization. Shipboard
systems are optimized for survivability and minimization of weight and volume. Power
utilities on the other hand optimize for reliability and minimization of cost. The unique
characteristics of the shipboard systems result in markedly different design requirements
and standards as compared to power utilities.

Frigates, destroyers and cruisers are relatively small warships with corresponding
small electric power systems. Frigates normally displace from 2000 to 4000 long tons
(1 long ton = 2240 1bs) and have a primary mission of escorting merchant convoys. In the
U.S. Navy, frigates have only one propulsion shaft and about half the armament of a
destroyer. Destroyers displace from 4000 to 7500 long tons and are designed as escorts for
aircraft carrier battle groups. Cruisers are larger than destroyers, displacing from 6000 to
16000 long tons, carry more weapons, and are used to provide aircraft carrier battle groups
with integrated anti-aircraft and anti-cruise missile defenses. U.S. Navy cruisers and
destroyers all have two propulsion shafts.

The installed electric plant capacity for U.S. warships has varied from 3000 KW to
4500 KW per propulsion shaft over the past twenty years. Generally, the newer ships have
more installed capacity. Figure 2.1-1 shows the electric plant characteristics for the major
classes of conventionally fueled frigates, destroyers and cruisers constructed in the past
twenty years. All the listed ships with the exception of the Knox class frigates use
mechanically coupled gas turbine propulsion. The Knox class frigate is the last class of
conventionally fueled warships to use 1200 psi steam for main propulsion. (All nuclear
powered ships use 600 psi steam). Most of the Knox class frigates are presently being
transferred to the reserve forces or being decommissioned.
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Figure 2.1-1 U.S. Navy Ship Characteristics

|

Ship Class (Nbr) Name KW Generator Type |Year
FF-1052 Frigate Knox 4x 750 KW | 3 Steam Turbine |1969
(46) 1 Diesel
FFG-7 Frigate Oliver Hazard | 4 x 1000 4 Diesel 1977
(51) Perry KW
DD-963 Destroyer Spruance 3 x 2000 3 Gas Turbine | 1975
(31) KW
DDG-993 Destroyer Kidd 3 x 2000 3 Gas Turbine {1981
4) KW
DDG-51 Destroyer | Arleigh Burke | 3 x 3000 3 Gas Turbine {1991
(1+28) KW
CG-47 Cruiser Ticonderoga | 3x2500 3 Gas Turbine | 1983
(19+8) "Aegis" KW

Figure 2.1-2 Shipboard Electric Distribution System
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Figure 2.1-2 shows a typical ring bus architecture found on modem warships. The

small size of the shipboard system results in many differences with respect to commercial

systems. As a consequence the analysis of the shipboard plant requires recognition of these

differences:

1.

7.
8.

Power Quality requirements relaxed relative to commercial
standards. Constant frequency and voltage assumptions
can not be made. See section 2.2 for more details.

Very little Rotational Inertia require fast controls to
maintain frequency. Infinite bus assumption does not hold.

Transmission lines are very short and for the most studies,
can be ignored.

No scheduling of real or reactive power. All generators
are loaded in equal proportion to their rating.
Load Flow solution has little meaning.

Load sharing information communicated to all online generators.

Large loads (relative to the size of generation plant) present.
Start up transients (load dynamics) are important.

Power Electronic Switching loads are significant.

Load shedding strategies are minimal.

Figure 2.1-2 also indicates the requirement for a simulation environment to include

the ability to model more than just electric power phenomena. Modelling shipboard

systems also requires extensive representation of mechanical dynamics as well as energyless

information transfer between components. This requirement is significant in that simulation

packages for commercial power systems do not include this capability as an integral part of

the simulation environment design.

2.2 Shipboard Electric Plant Standards

The primary standards for designing a shipboard electric plant are contained in the

following references:

Department of Defense, Interface Standard for Shipboard Systems, Section 300A,
Electric Power, Alternating Current (Metric), MIL-STD-1399(NAVY), 13
October 1987.
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Department of the Navy, General Specifications for Ships of the United States Navy,
Section 300, General Requirements for Electric Plant, Naval Sea Systems
Command, 1987.

Department of the Navy, General Specifications for Ships of the United States Navy,
Section 320, General Requirements for Electric Power Distribution Systems,
Naval Sea Systems Command, 1987
The goal of electric power utilities is to provide a reliable source of high quality

electric power at minimum cost. Shipboard systems on the other hand are designed to

provide a survivable and continuous source of electricity. Quality and cost are secondary
issues. Figure 2.2-1 summarizes the minimum quality of power a shipboard system must

provide

Figure 2.2-1 clearly demonstrates the quality of power guaranteed onboard a warship
is considerably lower than the quality of service provided by power utilities. Figure 2.2-1
does not show however, how often the transient conditions occur. This information is
provided by MIL-STD-1399 and summarized in figure 2.2-2. A major ramification of the
low quality of power provided by the ship service electric system is that loads must be
designed to operate and survive wide ranges of voltage and frequency fluctuations. This is
one of the reasons why commercial equipment often can not be directly installed onboard
ships (Shock requirements are also a major factor). Sensitive loads must provide their own
filtering and protection circuitry. This militarization of equipment can add considerable
cost and complexity to warship design, outfitting and maintenance.
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Figure 2.2-1 : Shipboard Electric Power Quality Standards (MIL-STD-1399)
Frequency
Nominal 60 Hz
Tolerance 3%
Modulation' 0.5%
Transient Tolerance +4%
Transient Recover Time 2 seconds
Worst Case Excursion +55%
Voltage I
Nominal 440/115 Volts
Tolerance of 3 Phase Ave +5%
Tolerance of any 1 Phase +7%
Line Voltage Unbalance? 3%
Voltage Modulation 2%
Transient Tolerance +16 %
Maximum Departure Voltage from 6%
combination of 3 Phase Ave. and
| Voltage Modulation
Worst Case Excursion +20%
Recovery Time 2 Seconds
Voltage Spike’ 2500 / 1000 Volts
Voltage Waveform 1
Max Total Harmonic Distortion* 3%
Max Single Harmonic 2%
Max Deviation Factor’ 5%
Emergency
Frequency Excursion -100 % to +12 %
Voltage Excursion -100 % to +35 %
Duration 2 Minutes
E,.-F
1 Modulation (percent) = — :' 100 measured over a period of 1 to 10 seconds.

2 Line Voltage Unbalance is the difference between the largest line to line voltage and the
smallest line to line voltage divided by the nominal voltage.

3 A Voltage Spike is a voltage change of less than 1 ms duration.

4 Total Harmonic distortion is the ratio of the rms value of the residue (after elimination of
the fundamental) to the s value of the fundamental.

& Deviation Factor is the ratio of the maximum difference between comresponding ordinates
of the waveform and an equivalent sine wave to the magnitude of the equivalent sine wave.
The equivalent sine wave is defined as having the same frequency and rms voltage as the
wave being tested.
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Figure 2.2-2 Shipboard Electrical Reliability

Voltage Transients of 10% or less Several times an hour
Voltage Transients of 10% to 16% Several times a day
Voltage Spikes above 200 Volts About once every 3 hours

The basic reason for the low quality of power onboard ship is the lack of rotational
inertia in the power system. In the commercial sector, the inertia of all the generators in the
network add up to such a large number that no single fault can cause a frequency
disturbance system wide. Onboard ship however, generators are often operated
independently. Other than the inertia provided by motors, the only source of rotational
inertia is the one generator. Since the generators are not very large, sudden load changes
and faults can cause significant disturbances. Although speed govemors and voltage
regulators have improved significantly in the past twenty years, there is presently no way to
prevent the transients from happening.

The frequency tolerance limits in the steady state are rarely ever approached in
modem warships. The rather loose tolerances allowed the use of droop governors to stably
share loads. The electric plant operator on older ships could increase the load on a
paralleled generator by increasing the base frequency set point on the mechanical speed
govemnor. Adjusting the system frequency without changing the load sharing ratios required
adjusting the base frequency set points on all the generator speed govemnors. On modem
warships, all the generators normally operate isosynchronously and perform load sharing by
transmitting load current information to Governor Control Units which provide feedback to

the isosynchronous governors.
2.3 Shipboard Electric Plant Design

In the commercial sector, the design of electric generation and transmission capacity
are done continuously. Ships on the other hand, have a finite life (typically thirty years) and
the expense of upgrading the capacity of the electric plant and distribution system once the
ship is built is usvally prohibitive. In this sense, capacity expansion onboard ships is not
done. Instead, excess capacity is initially installed to account for projected growth in load.

The maximum load for a ship design is determined by tabulating every load in an
Electrical Load Summary and summing up the power requirements under different
operating conditions. The maximum projected load usually occurs when the ship is in battle
condition and the ambient temperature is low (Electric heaters are used in many areas of a
ship). To account for uncertainty in estimating loads, a 20 % margin is added to the
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maximum projected load. Another 20 % margin is added for capacity expansion
requirements. Ninety percent of the capacity of all but one of the installed generators must
meet or exceed the margined maximum projected load. The ninety percent requirement
allows for imprecise load sharing when at maximum load while the all but one requirement

accounts for taking one generator off line for maintenance.

Figure 2.3-1
U.S. Ships - Electrical Loads
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Once the size of the electric plant is determined, there are a number of other
considerations that must be accounted for. GENSPECS® require the system be ungrounded
and based on Split Plant Operation (Each generator operating independently) with the
capability for parallel operation. Electromagnetic Interference (EMI) and Electromagnetic
Pulse (EMP) requirements place further constraints on the electric plant design and are
detailed in MIL-STD-461 and MIL-STD-1310. Since warships are designed for combat,
they must also be capable of surviving severe mechanical shocks from exploding ordnance.
The shock requirements are particularly important for electrical equipment such as circuit
breakers and generators. Specific requirements for shock are listed in MIL-STD-901.

6 General Specifications for Ships of the Unites States Navy
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A number of loads onboard a ship are very important for survival of the ship and crew
during combat and emergencies. These loads are designated vital loads and must be
provided with primary and alternate sources of power. Some of the vital loads have
automatic bus transfer switches (ABT) which switch to the alternate source automatically
on loss of the primary source. Others use manual bus transfer switches (MBT). Examples

of vital loads include:

Collective Protection System Class W ABT
Ventilation
Emergency Communications MBT
Emergency Lighting ABT
Fire Pumps ABT
AFFF Pumps ABT
Interior Communications ABT
Machinery Space Circle W Ventilation MBT
Steering Gear Auxiliaries ABT
Surface Search Radar MBT
VHF Bridge-to-Bridge Radio MBT
Vital Propulsion Auxiliaries MBT and ABT
Auxiliaries to support generator prime MBT
movers

From a naval architectural viewpoint, the placement of electric generators requires a
number of compromises. Placing the heavy generators as low as possible is beneficial for
hydrostatic stability purposes. The lower the generator however, the more volume is
required for intake and exhaust ducting. Gas turbine generators are lighter than diesel
generators, but require greater volumes of air. Furthermore, design requirements exist for
separating 50 % of the installed capacity by two watert:zht bulkhcads and installing a
minimum of three generators. Generally, weight can be minimized by using the smallest
number of generators (three). However, if four generators are used, the generators can be
located in two machinery spaces instead of three. By using only one set of intake and
exhaust ducts, volume for ductwork can also be reduced. Since most recent ships have had
weight constraints placed on them by Congress, the minimum number of generators have
been used.’

7 A very simple cost model for warships assigns a cost per ton of different components of a
ship. With this in mind Congress has in the past placed constraints on the weight of ships in
order to keep costs down.
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Enclaving is a concept for arranging ships which involves locating all the equipment
required for a given combat system within the same general area of the ship. If a ship is
completely divided into a number of enclaves, one enclave can be damaged by enemy
ordnance while the others remain functional and capable of continuing the engagement. To
work properly, this concept requires the enclaving of sources of distributed services (such as
electricity, cooling water, fire fighting water and dry air). Presently, enclaving has not been
incorporated in any warship design but its use has been proposed for a number of new
designs®. If enclaves are ever used, they will have a significant impact on the type, size,
number, and location of electric generators. In some enclaves it may not even be possible to
locate a conventional generator. Alternate generating or storage devices such as fuel cells
or batteries may be used.

2.4 Integrated Electric Drive

Most modern warships mechanically couple the main propulsion prime movers with
the propeller shaft. The mechanical power train is very efficient but imposes constraints on
machinery arrangement and adversely impacts survivability. The prime mover is usually
very heavy and must be located near the center of the ship to prevent excess trim. Shafting
must therefore penetrate a number of watertight boundaries and maintain precise alignment
over a great distance. The long length and precision requirements of the shafting make it
very vulnerable to weapon induced damage. While electric propulsion eliminates many of
the survivability and arrangement constraints of the mechanical system, the propulsion
system must be carefully designed to ensure overall plant efficiency is not degraded by the
extra power conversion losses in converting to and from electric power. Designed properly,
an electric drive system can achieve the survivability and arrangeability benefits without

suffering from a lower propulsion plant efficiency.

Integrated electric drive interconnects the generation of power for propulsion with the
generation of ship service electric power. The propulsion plant for U.S. warships typically
averages between 30 and 37.5 MW per shaft. The capacity is sized to provide enough
power to propel the ship at a desired maximum speed. Most ships however, do not operate
for extended periods of time at maximum speed. Operating at half maximum speed requires
only about 20 percent of the installed power and quarter maximum speed requires only 2 or

8 Enclaving requires a greater redundancy of equipment which results in the ship becoming
larger and more expensive. Since most ship designs are cost constrained, enclaving
provisions are often deleted to reduce the per unit price of the warships.
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3 percent. Thus a 28 knot frigate with a 30 MW plant could go 7 knots using less than 1
MW of power and 14 knots with about 6 MW of power. If the propulsion plant consists of
two 15 MW generators, one generator could easily supply all the required power for both
propulsion and ship service at the normal operating speeds of 12 to 15 knots. This has the
potential of reducing the fuel consumption of warships under normal operating conditions
by improving the overall efficiency of the power plant even though the efficiency of the
power transmission system is lower. By careful selection ot generator number and size, one
can tune the overall efficiency of a plant for optimization at several different speeds. In the
U.S. Navy, optimizing plant efficiency for 20 knots is beneficial since this is the speed used
to calculate the amount of fuel carried by the ship.’

In a typical integrated electric drive scheme, the propulsion prime movers are
connected to both a propulsion generator and to a ship service generator (PDSS or
Propulsion Derived Ship Service). The speed of the generator is set to optimize efficiency
of the prime mover at the given power loading. Consequently, cycloconverters are used to
convert the power to either 60 Hz for ship service, or to whatever frequency the propulsion
motors require. Usually, an additional diesel or gas turbine ship service generator is
included to provide power in port or during emergencies. Figure 2.4-1 shows a typical
PDSS design for a two shaft frigate sized ship.

Figure 2.4-1 emphasizes the need to model mechanical dynamics and control
information signals. The control signals can couple the dynamics of different devices
within the system and must therefore be carefully modelled. The control signals can also
destroy such properties as diagonal dominance which makes analysis of commercial power

systems much easier.

One of the features of an electric drive system which may be exploited in the future is
the ability to divert all of the propulsion power capacity from propulsion to some sort of
high power combat system. Weapons such as rail guns and high energy lasers may become
possible. These types of weapons would be safer for the ship since the requiremernt to store
large amounts of chemical explosives for propellent charges would be reduced. Energy to
move projectiles would be stored in the form of relatively inert fuel oil instead of highly

9 Most other navies use 18 knots which allows for combined plants such as CODOG where a
diesel engine is used for cruising and a gas turbine for high speed. Unfortunately, the size
requirement for a diesel capable of propelling a ship at 20 knots is prohibitive and results in
U.S. warships only using gas turbines and carrying much more fuel.
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Figure 2.4-1 Integrated Electric Drive
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explosive chemical propellents. Switching large amounts of electric power onboard ships
presents a number of technical challenges both in the design of physical equipment and also
in attempts to accurately simulate the phenomena. The effect of pulse loads on the electric
system is not a trivial simulation problem.
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Chapter 3 Framework

Conducting time domain simulations of systems of nonlinear lumped parameter mc dels
characterizing shipboard electric power systems requires an organized approach to
developing device models as well as network equations. The major contribution of this
thesis is the development of a simulation environment having the following properties:

1. An object oriented approach to developing the mathematical description of devices
independent of the manner in which the variables are represented.

2. An organized method for generating system equations for interconnecting device
models into subsystems and systems.

3. An algorithm for solving the system equations and variables by identifying smaller
blocks of equations and variables which can be sequentially solved. The
algorithm develops the concept of the device structural jacobian matrix and the
system structural jacobian matrix.

»

The ability to use a wide range of methods to describe variable waveforms. In
particular, describing waveforms through vectors of coefficients of polynomial
series, orthogonal function series, and data series are stressed.

5. The ability to solve the system of equations by employing either the
Newton-Raphson Method or Waveform Relaxation. The Newton-Raphson
method is modified to improve convergence properties through the use of

continuation methods.

This chapter is organized into five parts. The first part defines the device which is the
fundamental building block of the system simulation. The second part shows how to
interconnect several device models into systems and subsystems. The third part defines the
waveform as a vector of coefficients to approximate waveforms over time intervals. The
fourth part details the actual procedure for conducting a simulation. The fifth and final part
details some finer points which should be considered when constructing models.
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3.1 Device Description

A Device Description is an organized manner for describing the characteristics of
a physical component. This description includes definitions of variables which interface
with other components in a system, variables called states which allow for information
storage, and constitutive relations describing the device behavior.

3.1.1 Interface Variables

The interface variables are defined as either potential variables or flow
variables depending on their interaction with the interface variables of other devices
within a system or subsystem. Systems and subsystems are constructed by grouping
the interface variables of one or more devices into sets called nodes and applying
network equations determined by the types of variables attached to the nodes.

All potential variables attached to a node are equated to a potential value
associated with the node. Physical quantities which can be classified as potentials include
voltages, signal levels, rotational speeds, deflections, and pressures. All potentials are
referenced to 0. All potential variables connected to the same node must be defined with
respect to the same system wide reference level. In other words, 0 must mean the same
thing for all of the potentials attached to a given node.

The sum of all flow variables attached to a node is equated to zero. Physical
quantities analogous to flow variables include currents, power flows, torques, forces and

mass flow rates.
3.1.2 Terminals

Terminals provide a mechanism for organizing the interface variables of a device.
In general, there are two types of terminals: Normal Terminals and Information
Terminals.

A normal terminal has associated with it a flow variable and a potential variable.
Its electrical analog is one of the wiring terminals on an electrical device. A mechanical
analog is the rotating shaft coupling of a gearbox. The equations for exchanging energy
between devices can be generated through the list of normal terminals connected together

at a given node.




An information terminal has associated with it only a potential variable. The
potential variable is used to convey knowledge between devices without transferring
energy. Set points, meter readings, and control signals are all examples of energyless data
which can be conveyed through information terminals.

All normal terminals have an associated KCL Group number. A KCL group is the
smallest subset of a device’s terminals such that the sum of the flow variables within the
subset is identically zero for at least one of the possible dynamic configurations of the
device. Normal terminals which can not be associated with a KCL group are given a group
number of 0. The remaining terminals are assigned the group number of their parent KCL
group.

The KCL Group number is used to detect possible reference frame problems within a
simulation network. A given electrical circuit problem for example, must have at least one
normal terminal with a 0 group node within a given independent system to ensure the set
of system KCL equations is not singular. Normally this terminal is associated with a one
terminal device with an export potential and import flow which is used to specify the value
of a given reference node potential. This Reference Frame Check is discussed in greater
detail in section 3.2.4.

Some devices may have variable numbers of KCL Groups depending on the
operating point of the device. A simple model of a two terminal switch for example,
would have 1 KCL group when the switch is closed (the sum of the currents entering the
switch is identically zero) and 2 KCL groups when the switch is open (both flow variables
are identically zero). For the purpose of defining the device, the worst case in terms of
creating singular systems should be used. In the switch example, each terminal should
have their own KCL group number for a total of two KCL groups.

3.1.3 Variable Direction: Import and Export Variables

The Interface variables can further be classified by whether they are a resource
(Import) or product (Export) of the device description. A device description can be
considered a means for generating export variables based on the values of the import

variables, states, parameters, continuation parameter, and time.

An import variable is taken as input by the device description. An import variable
can be any interface variable associated with either normal or information terminals. To
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ensure a consistent set of equations when several devices are connected together in a
system, the total number of import variables associated with normal terminals must equal
the number of normal terminals

An export variable is explicitly defined and considered a product of the device
description. An export variable can be any interface variable associated with either normal
or information tcrminals. To ensure a consistent set of equations when several devices are
connected together in a system, the total number of export variables associated with
normal terminals must equal the number of normal terminals.

3.1.4 States

States are variables whose values are stored for a given time for later use. States
can be used for example, to store the constant of integration for a dynamic equation. States
can also be used to store the operating mode for a given device. In general, if the value of
a given variable depends on the previous value of another variable, that other variable is a
state.

3.1.5 Parameters

Parameters are constants which specify characteristics of the device or in other
words, customizes a given device description to represent a given physical device. A
model of a resistor for example, includes a parameter for resistance. This precludes the
requirement to develop a model for every resistor value. We only need construct a generic
resistor model instead of a 10K resistor model, a 22K resistor model, etc.

3.1.6 Constitutive Equations

The constitutive equations are a consistent set of equations for specifying the
values of the states and export variables. In general, the number of constitutive equations
needed is equal to the number of normal terminals plus the number of export variables
associated with information terminals. The total number of import variables associated
with normal terminals and the total number of export variables associated with normal
terminals must independently equal the number of normal terminals. There is no
constraint on the number of import variables associated with information terminals.
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3.1.7 Device Jacobian Matrices

A Device Jacobian Matrix provides the sensitivities (partial derivatives) of the
export variables with respect to the import variables. This implies there is a given
ordering of both the import X, and export Xy variables:

X
XIZ
XI3
X,=
-Xln'-
X
XD
XEJ
Xp=
-XE"'-
i aXEI aXEI aXEI aXEl ]
X, X, X, = 0K,
X, oKy g X,
K, X, oK, =~ X,
WKy, Xy K s,
J= aX” aXn BXB h aX,,,,
K, Wy, W, X,
aX" aX]Z aXB h aX],.,
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The Device Jacobian Matrix is used to generate a consistent set of import variables
which simultaneously satisfy the device constitutive equations along with constraints
imposed by the connections of terminals to nodes. From the device point of view however,
the Jacobian marrix 1s merely a product that must be computed.

Up to this point, we have not discussed the manner in which the variables are
described. If the variables are represented by real numbers, then each element of the
Jacobian is also a real number. If instead the variables are represented by vectors, then the
Jacobian elements will be matrices.

3.1.8 Device Structural Jacobian Matrix

The Device Structural Jacobian Matrix describes the properties of the elements
of the device Jacobian matrix for a given type of variable representation without actually
providing any values. The following codes can be used to describe the properties of the
matrix elements of the device Jacobian matrix:

l Code |Type of Matrix ;ll
. 0 Zero Matrix (all elements are always zero) ]

I Identity Matrix (always the identity matrix)

D Diagonal Matrix (always a linear main diagonal matrix)

L Linear Matrix (The elements are always constant)

A Nonlinear AC Matrix (see Note 3.1.8-1)

N Nonlinear Matrix (The elements may not be constants)

U Unknown (The dependence is unknown (treat as nonlinear))

Note 3.1.8-1: An AC Matrix is one for which the constant component of the export
variable depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

The device structural Jacobian matrix is useful in developing the algorithm for
generating a consistent set of impont variables without having to deal directly with the

potentially much larger device Jacobian matrices. If an iterative solution scheme is used to
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develop the consistent set of import variables, the device structural Jacobian matrix
indicates directly which matrix elements must be recalculated for each iteration. (Only the
nonlinear and unknown elements have values which change between iterations)

3.1.9 Continuation Parameter

A system containing one or more nonlinear devices may be difficult to solve with an
iterative method. The region of convergence around the solution may be so small as to
make the probability of success for choosing a starting point for the iterative scheme
almost zero. One method for enlarging the region of convergence is through the use of a
continuation parameter which varies from 0 to 1. When the continuation parameter
has value 1, the export variables are developed using the normal nonlinear constitutive
equations. When the continuation parameter has value 0 however, the export variables are
developed using a linear set of constitutive equations. As the continuation parameter
increases from 0 to 1, the export variables traverse a continuous path from the linear
solution to the nonlinear solution. One common method for generating such a dependence

on a continuation parameter o is:
F(X,0) = oF,(X) +(1 - 0)F,(X)

where F (X) is the nonlinear function for generating the export variables, F(X) is the
linear function approximation, and F(X,0) is the function for determining the export
variables for intermediate values of a. Section 3.4.2 describes in detail continuation
parameters in relation to the Newton-Raphson method.

3.1.10 Discontinuity Time Prediction

If the variables are described as a waveform over a given time interval [ff,]
knowledge of the time of discontinuities can prove useful to the algorithm which generates
the consistent set of import variables. The accuracy of a vector description of a waveform
often deteriorates greatly if there is a discontinuity during the time interval. Varying ¢,
such that it falls on a discontinuity will often improve the accuracy of the waveform
representation. For this reason, each device has the opportunity to recommend a
recalculation time for the current interval. Normally, the system would use the minimum
recommended recalculation time offered by any of the devices to recompute the time

interval.
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3.2 Network Description

A network is composed of a system of devices and Subsystems whose terminals
are interconnected at nodes. The network is a closed system having no terminals defined
for any of its nodes. A subsystem is a system having terminals defined for at least one of
its nodes and therefore can not be solved independently of other devices or subsystems.

3.2.1 Nodes

A node connects together one or more terminals from one or more devices. The
nodal connections are the means by which devices are combined to form systems (both
networks and subsystems). The nodes provide the association of device import and export
variables with system variables through nodal equations. Each node is assigned a
serial number for identifying it from the other nodes. There are two types of Nodes:
Normal Nodes and Information Nodes.

3.2.1.1 Normal Nodes

A Normal Node has at least one normal terminal attached to it. Information
terminals can be associated with the node as long as none of the information terminal
potentials are defined as an export variable. A normal node has associated with it a node
potential as well as a Kirchhoff Current Law (KCL) equation. The number of normal
nodes is designated by n,.

In a subsystem, a normal node can also have associated with it a terminal for
connecting with other subsystems and devices. This terminal can be either a normal
terminal having an associated terminal potential and flow variable or an information
terminal having only an export potential. (import and export refer here to the direction
relative to the defining subsystem which is opposite to the normal definition which is
relative to the components of the subsystem). The total number of normal node normal
terminals defined for a subsystem is designated n,,,. For any given subystem the number
of normal node terminal export variables and import variables must both independently
equal n,,,. The total number of normal node information terminals is designated n,,.

3.2.1.2 Information Nodes

An Information Node has only information terminals attached to it. Furthermore,
one and only one of the terminal potential variables must be an export variable. Only a
node potential is associated with an information node. Information nodes work in the
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same manner as hooking up stereo componenents: you can hook up as many inputs
(import variables) as you want to any given output (export variable), but should never
hook up two or more outputs together. The number of information nodes is designated by

n,

As an option for subsystems, an information node can have associated with it an
information terminal for connecting with other subsystems. Since the meanings of import
and export are once again reversed for this terminal, no other export potentials from other
devices or subsystems may be attached to the node if the information terminal potential is
an import variable. If the information terminal potential is an export variable, exactly one
other export potential from other devices or subsystems may be attached to the node. The
total number of information node information terminals is designated n,,.

3.2.2 System Variables

System variables comprise the minimum set of variables from which all of the
device import and cxport variables can be derived from. The set of system variables is
composed of node potentials as well as all device import flow variables and normal node
normal terminal export flow variables. For a subsystem, the node terminal import
variables are assumed to be provided by the encompassing system or subsystem and are

not considered system variables.
3.2.2.1 Node Potentials

All of the node potentials of the normal and information nodes are system variables
which must be solved for. Hence there are a total of n, = n, + n, node potentials.

3.2.2.2 System Flow Variables

All of the Import Flow Variables of the various devices making up the system as
well as the export flow variables of the normal node terminals are system variables. The
number of system flow variables is designated by n,.

3.2.3 System Equations
3.2.3.1 Kirchhoff Current Law Equations

Kirchhoff’s current law states the sum of the flow variables entering a node is equal
to zero. For a given normal node or normal terminal node, this law is expressed by
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generating a list of the terminals of the various devices and subsystems attached to the
node. The number of Kirchhoff Current Law equations is equal to the number of normal

nodes n,.
f0= .?l I;=0
where
50 KCL Equation for node j (Should Equal Zero)
n, Number of normal terminals attached to node
I, Flow Variable associated with ith normal terminal attached to node j

3.2.3.2 Potential Difference Equations

A Potential Difference Equation is created for each of the export potential
variables of the various devices and other subsystems and for each of the import potential
variables of the node terminals. This equation merely states the difference between the
node potential and the potential variable is zero.  This equation is expressed by
generating a list of the terminals of the various devices and subsystems attached to the
node having an export potential variable. Since one and only one export information
potential can be assigned to an information node and can never be attached to a normal
node, the number of potential equations due to export information potentials is simply n,.
The requirement for a device to have equal number of import and export variables
associated with normal terminals forces the number of export normal potentials to be n,.
Hence the total number of potential equations is n, = n, + n,.

f;0=V,-V,;=0
where
50 Potential Difference Equation for node j export potential variable i
(Should Equal Zero)
v, Node j Potential
vV, ith export potential variable associated with node j.
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3.233 R, and G,

One method for preventing linear dependences among the system equations is to
modify the equations to include an extra term corresponding to either a small conductance
G\, to the ground potential for KCL equations or a small series resistance R, for the
potential difference equations. The KCL equation is now given by:

f0=GuV,+ T 1;=0

The potential difference equation is similarly modified:

min” ji

The goal in using G, and R,,, is to reduce the condition number of the system
Jacobian matrix to the point where the system can reliably be solved (A singular
matrix has an infinite condition number). G, and R, can also add fictitious dynamics
to the system and thereby lead the simulation to produce incorrect results. Hence if used,
G, and R, should be large enough to bring the condition number down to a reasonable
level, but small enough to prevent their inclusion from having appreciable effect on the

simulation results.
In general, the use of G,,,, and R, should be avoided for these reasons:

1. G, and R,,, are fictitious elements. If either is significant, they should be
explicitly included as a device.

2.  The indiscriminite use of G,,, and R,,, adds to the complexity of the system
and decreases the degree to which the system can be reduced into smaller blocks.
In other words the inclusion of G,,,, and R,,;, may greatly increase the computation
time.

G,.. and R, are included in WAVESIM for these reasons

1. G, and R, can be selectively specified for individual nodes. If a simulation
fails to converge for one reason or another, G,,;, and R,,;, can be employed to find
the part of the system experiencing difficulties. G, and R, are excellent
debugging tools.
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2. Since G, effectively connects the node to the ground potential, G,,, can be
used to ensure all of the nodes have the same potential reference and ensure there

are no linear dependent KCL equations.
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3.2.4 Reference Frame Testing

If a given set of a system’s normal nodes can be found such that all terminals
attached to any of its nodes have nonzero KCL groups and such that if a terminal is
attached to one of the set’s nodes, then all of remaining terminals of the parent KCL group
are also attached to one cof the nodes of the set, then there exists the possibility of a singular
systern due to the 1. =ar dependence of the KCL equations for the set of normal nodes.

If G,,, is non-zero for a node, it should be considered a terminal with a 0 KCL
Group. If G,,, is zero, it should be ignored.

Testing for a possible singular system can be accomplished with the following
algorithm:

1. Set all the normal node circuit_group_indicatorsto (.
Set the circuit_group_counter to 0

Set the circuit_group_singular_flagto 0

2. Start with the first normal node having a 0 circuit_group_indicator
If none can be found then algorithm is complete.

Increment circuit_group_counter.

3. Change the circuit_group_indicator of the node to the

circuit_group counter.

4. For each terminal attached to the node:

4a. If the KCL group number is zero, set the
circuit_group singular_flagtol.

4b. If the KCL group number is nonzero, loop through each normal
terminal of the device. If the terminal belongs to the same
KCL group and the node the terminal is attached to has a
0 circuit_group_indicator, then set the node
circuit_group_indicator to the negative

of the circuit_group_counter.

5. Search all of the nodes for a negative circuit_group_indicator
If none can be found and the circuit_group_singular_flag is zero
Warn user that a singular system may exist with the group nodes.
If none can be found then go to step 2
If one is found, then go to step 3
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Setting a proper reference for each such set of system nodes can be accomplished by
attaching to one of the nodes a one terminal device having the following characteristics:

3.2.4.1 Reference Device

Interface Variables
Terminal Potential Variable Flow Variable (KCL Grp) Type
Ref V (export) I (import) (0) Normal
Parameters
Ve Reference Potential Level
Equations
V=V
Device Structural Jacobian
Jps =[0]
Device Jacobian
Jp=10]

Notes

Most conventional circuit simulations define a reference node for which a potential
is defined and the KCL equation is not written. Adding this reference device to a node
effectively converts that node to a reference node in the usual senses. While it is true that
the KCL equation and an additional Potential Difference equation are still written for this
reference node, each is part of a one element block. The potential difference equation can
be solved before the simulation starts since it does not depend on any of the system
variables. The flow variable on the other hand, only appears in the KCL equation of the
one node and thus can be solved after all the other system variables have been found. In
fact, the flow variable should normally equal zero if the rest of the circuit is indeed
linearly dependent.

As a convenience to the user, WAVESIM automatically attaches a reference device
with V= 0 to the node with serial number 0 if that node is used.
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3.2.5 System Reduction

The previous sections detail a method for generating a full set of system variables
and system equations. The total number of system variable equals n,, = n, + n; + n, which
also equals the number of system equations. For even a small system the algebraic order
nr,, can become quite large. For this reason, elminating system variables and equations
through system reduction is desirable. The primary tool for performing system reduction
is the system structural Jacobian.

3.2.5.1 System Structural Jacobian

The System Structural Jacobian facilitates the reduction of the algebraic order
of the system by showing the nature of the dependence of system equations to each of the
system variables. The System Structural Jacobian is constructed by combining elements
of the device structural Jacobian matrices according to the arithmetic of structural
Jacobian elements. The types of elements in the system structural Jacobian is given by:

Code |Type of Matrix H
0 Zero Matrix (all elements are always zero) -
I Identity Matrix (always the identity matrix)
D Diagonal Matrix (always a linear main diagonal matrix)
L Linear Matrix (The elements are always constant)
A Nonlinear AC Matrix (see Note 3.2.5.1-1)
N Nonlinear Matrix (The elements may not be constants)
U Unknown (The dependence is unknown (treat as nonlinear))

Note 3.2.5.1-1: An AC Matrix is one for which the constant component of the export
variable depends only on the constant component of the import variable. The other
components of the export variable can not depend on the constant component of the
import variable but are not restricted in any other way.

The addition and subtraction operators for the structural Jacobian elements is a
function of the manner in which the system variables are represented. For all of the
methods used in this thesis, the following definitions apply:
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I1+I=D
I-I1=0
I1£0=1
1+0=D
I-I=D
tn+m=1m*n=n(n2m, nzl)
U>N>A>L>D>I>0

Note, the Identity Code I, is not strictly necessary and if eliminated simplifies the
addition and subtraction operators to: '

intm=tmtn=n(n2m)

Before the system structural jacobain can be constructed, the system variables and
equations must be ordered. The first n, variables are the node potentials of the normal
and information nodes arranged in the order of the node serial numbers. The next n,
variables are the import flow variables ordered first by device then by device terminal.
The first n, equations conform to the Kirchhoff Current Law equations for the normal
nodes arranged in order of the node serial numbers. The remaining n, equations are the
potential equations for the export potentials ordered first by the node serial number they
are attached to, then by the order of the devices attached to the node, and finally by the
order of the terminals in the device.

The system structural Jacobian is constructed in two parts after being initialized to
contain only 0. First, a Kirchhoff Current Law equation is generated for each normal
node. The normal terminals of the normal nodes are examined one at a time. If the flow
variable is an import variable, it is also a system variable and an I is added to the
corresponding element of the system Jacobian matrix. If the flow variable is an export
variable, its corresponding row of the device structural Jacobian matrix is extracted. The
columns of the device structural matrix row correspond t< the device import variables.
All of the device import variables can be associated to either a node potential (one of the
first n, columns of the system structural Jacobian) or to one of the remaining n, import
flow variable columns. Hence it is quite easy to locate to which column each element of
the device structural Jacobian row must be added. If G,,, is non-zero for the node, a D
code is added to the column corresponding to the node potential.
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The remaining n, rows of the system structural Jacobian matrix are constructed by
examining each node one at a time. If the node has an export potential associated with it.
An I is added to the corresponding node potential column and potential equation row
element (unless of course the node is a reference node and does not have a column
associated with its potential). The row of the device structural Jacobian matrix
corresponding to the export potential is then extracted. In exactly the same manner as
described above for the export flow variables, the columns of the system structural
Jacobian matrix are correlated to the columns of the device structural Jacobian matrix.
Once correlated, the elements of the device structural Jacobian row are subtracted from
the appropriate elements of the system structural Jacobian matrix. If R, is non-zero for
the node and the terminal having the export potential has an import flow variable, then a
D is added to the column corresponding to the import flow flow variable. If R, is
non-zero for the node and the terminal having the export potential has an export flow
variable, then a D is multiplied by the elements of the corresponding row of the device
structural Jacobian matrix before being added to the corresponding corumn in the system
structural Jacobian matrix.

Once the structural Jacobian matrix has been constructed it can be examined to
ensure there are no glaring problems such as a row or column containing only 0 elements.
If a row or column contains only 0 elements, the system is ill-posed and can not be

solved.
3.2.5.2 Blocks

The primary reason for constructing the system structural Jacobian matrix is to
break down the system of equations and system variables into smaller blocks which can
be sequentially solved instead of solving the entire system at once. A block B, is defined
as n,, system variables and n,; equations which only depend on system variables of the
present block and previous blocks in the sequence. A block of size n,, is identified by
finding n,, rows in the system structural Jacobian matrix that have not already been
allocated to a block and have exactly a,, columns containing non-0 elements. Of the
many combinations of blocks which can be found for a system, the best combination
contains the largest number of small blocks. Here is an algorithm for finding the blocks:

1.  Create a list for each row containing the number of unallocated non-0 entries
in that row. (Initially all the rows and columns are unallocated)
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2.  Examine the list for rows having only 1 unallocated non-0 entries. Create a
block for each of these rows and their associated columns. Mark the rows and
columns as allocated.

3. Update the list of unallocated non-0 entries in each row.
4.  Continue steps 2 and 3 until no more single rows can be allocated.

5. Examine the list for two rows only having unallocated non-0 entries in the
same two columns. Create a block for each pair of rows and their associated
columns. Mark the rows and columns as allocated.

6.  Update the list of unallocated non-0 entries in each row.

7.  Repeat steps 2-6 until no more single row and double row blocks can be
identified.

8. Examine the list for three rows only having unallocated non-0 entries in the
same three columns. Create a block for each set of three rows and their
associated columns. Mark the rows and columns as allocated.

9.  Update the list of unallocated non-0 entries in each row.
10. Repeat steps 2-9 until no more blocks of up to size 3 can be identified.

11. Continue the above algorithm until all of the rows and columns have been
allocated. Remember it is necessary to go back and attempt to identify
smaller sized blocks after discovering a larger block since the removal of a
column could allow the identification of a new smaller block.

The order of identifying blocks is very important because they must be solved in the
same order. [Each block contains the same number of system variables and system
equations. The eauations only depend on system variables determined from the present
and previous blocks. Hence the simulation problem becomes an issue of solving
sequences of relatively small systems of equations described by blocks.

3.2.6 Reduced System

The reduced system consists of the sequence of blocks which when solved, provide
the solution for all the system variables. Solving each of the blocks can be done a number
of ways. Most schemes start with an initial guess for the system variables and generate
corrections to the guesses until all of the system equations for that block are satisfied.
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Generating the corrections is normally done through the use of a block Jacobian matrix
which can be constructed in much the same manner as the system structural Jacobian. If
the block structural Jacobian does not contain any A, N or U elements, the block Jacobian
can be inverted and multiplied by the system equation errors to provide the required
corrections. If there are any nonlinearities, this scheme can be performed several times
until the system equation errors are close to zero. This method is commonly referred to as
the Newton-Raphson method and if the initial guess is close enough to the solution, the
method converges quadratically. This method is described in much more detail in section
34.1.

Relaxation techniques can also be used to calculate the system variables. Relaxation
techniques start with an initial guess for all of the system variables and update each
variable one at a time by solving a single system equation by assuming all of the other
variables are constant. Typically, one system equation is assigned the task of solving for a
particular system variable. With careful thought as to the assignment of variables to
equations, it is often possible for such a system to converge to a solution. Common
relaxation techniques are the Gauss-Seidel and Gauss-Jacobi methods.
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3.3 Waveforms

Up 1o this point, the development of the simulation structure has been independent of
the manner in which variables are actually described. The simplest and most commonly
used method for representing variables is through a single real number representing the
value of a variable at a specific time. For static simulations where the problem is to obtain
the steady state solution for the system, this method works very well. Appendix C and
Appendix D demonstrate this procedure for the classic load flow problems. For dynamic
simulations however, some knowledge as to the time history of the variables is needed to
calculate derivatives and integrals. A dynamic simulation is implemented as a series of
static simulations where the dynamics are represented by functions of the time increment
and state variables. The various integration techniques for this type of simulation differ
only in the interpolation scheme used to approximate the variables between successive static
simulations. The time increment between static simulations must be carefully controlled to
ensure the interpolation scheme has enough accuracy for numerical stability. Integration in
this manner requires careful control of the time increment to ensure the interpolation
scheme is accurate enough to ensure numerical stability along with an accurate solution.

Another approach to representing variables is the waveform. This method employs a
vector of coefficients to continuously describe the time domain value of the variable over
some time interval [4 ¢,]. The type of the waveform determines how the coefficients are
interpreted to generate the time domain values. Possible types include Data Series, Fourier
Series, Legendre Series, Polynomial Series and Legendre Series. The principal advantages
of using waveforms over discrete points include:

1. Interpolation is not generally required to determine intermediate points. The
value of a variable can readably be determined for any time.

2. The numerical stability of Integration and Differentiation techniques do not
have to depend on the time step control since integration and differentiation
become waveform operators on an equal level to all other operators. Time step
control becomes only an issue of numerical accuracy and not of numerical
stability.

3. Certain operations may be easier to perform with one waveform type. The
ability to efficiently convert a waveform from one type to another type and
back again allows one to use the most efficient waveform type in the
calculations of a given operator.

-62-




3.3.1 Waveform Definition

A waveform approximates the instantaneous value of a variable over some time
interval. The elements of information contained within a waveform must as a minimum

include:
1. The name of the waveform

The beginning and ending times of the interval (¢, ,)

2

3. An Array of Coefficients representing the waveform (c;)
4 The number of coefficients in the Coefficient Array (n)
5

A waveform type indicator.

The waveform type indicator identifies how the coefficients should be
interpreted when operations are performed ¢n the waveform. Here is an example of a C
structure defining a Waveform:

typedef struct Waveform
{
char *name; /* character string of the name
of the variable */

double £n; /* time of the beginning of the interval */
double tl: /* time of the end of the interval */

void *c; /* array of coefficients */

long n; /* number of elements in the array */

long type; /* waveform type indicator */

long version; /* Version of this waveform */

struct Waveform *next; /* pointer for forward
linked lists */

struct Waveform *last; /* pointer for backwards
linked lists */

struct Jacobian *jnum; /* pointer to linked list of
jacobians where this waveform
is the numerator */

struct Jacobian *jden; /* pointer to linked list of
jacobians where this waveform
is the denominator */

}
WAVEFORM;

The above definition also includes the following optional information:

6.
7.
8.
9.

A Version Number to record a change in the waveform’s properties.
An Address Pointer to the waveform representing the previous time interval.
An Address Pointer to the waveform representing the following time interval.

An Address Pointer to a linked list of Jacobian Structures.




The waveform address pointers allow one to construct a linked list of waveforms to
describe the time history of a variable over 2 number of time intervals. The Jacobian
structure as well as the version number will be described in section 3.3.3.

Note the waveform coefficients are declared to be of type void. This is done to allow
for the coefficients to be abstract data representations in themselves. Normally the
waveform coefficients would be double precision floating point numbers, but it should also
be possible to incorporate other types of data. It may be advantageous for example, to
represent the coefficients with complex numbers. In this case, each element in the
coefficient array would be a structure holding double precision floating point numbers
corresponding to the real and imaginary parts (Or magnitude and phase angle) of the

complex number.




3.3.2 Waveform Operators

Waveform Operators are functions which act on waveform arguments to generate
new waveforms, or provide some information about the waveform arguments. The types
of functions can be broken down into several groups:

1. Arithmetic Operators

2. Trigonometric/Exponential Operators
3. Switching Operators

4. Integral/Differential Operators

5. Waveform Content

6. Special Functions
3.3.2.1 Arithmetic Operators

The arithmetic operators are the customary addition, subtraction, multiplication,
division, and assignment operators usually associated with floating point arithmetic. The
assignment operator is a bit more complex since it must incorporate waveform type and

number of coefficient conversions.
3.3.2.2 Trigonometric/Exponential Operators

The Trigonometric/Exponential operators include most of the transcendental
functions used in engineering. Examples include sine, cosine, tangent, logarithms,
exponentials, as well as the inverse functions. Error handling can become quite complex
since several of these operators may be undefined at one or more points within the
argument waveform. These operators are usually handled by converting the arguments to
a series of data points, performing the operation point by point, and then converting back
to the appropriate waveform type.

3.3.2.3 Switching Operators

Switching Operators are operators producing waveforms which themselves or one
of their derivatives are discontinuous. Examples include the absolute value function, the
sign function and the step function. The typical method for calculating these functions is
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to determine the discontinuity points and use integration to create a characteristic function
series solution (e.g. Legendre Series or Chebyshev Series) for the result. The series
solution is then converted to the appropriate waveform type.

3.3.2.4 Integral/Differential Operators

One of the key advantages of using waveforms in dynamic simulations is that
integration and differentiation become very simple operators where the stability of a
numerical integration scheme is generally not an issue. For many waveform types, the
integration operator is a linear matrix operation with bounded coefficients. If the
argument waveform has bounded coefficients, the retummed waveform will also be
bounded. Of course, numerical stability does not assure numerical accuracy. Because the
integration operator typically generates some truncation error, the retumed waveform can
still contain considerable errors.

3.3.2.5 Waveform Content

The significance of the Truncation Error of a waveform can be estimated by
calculating the waveform content of its higher order term. The waveform content of a
term is defined as the magnitude of a coefficient divided by the square root of the sum of
the squares of all the coefficients. Normally, one expects the higher order terms of an
orthogonal series representation to progressively have smaller and smaller waveform
contents. Hence if the last few terms have values below a preset threshold, the truncation
error can normally be assumed negligible.

Accurate truncation error estimation is still a difficult and currently unsolved
research topic. The waveform content method is a practical method but should not be
taken as the last word on the subject.

3.3.2.6 Special Operators

Several special operators unique to waveforms should also be developed. One very
useful operator returns the time of zero crossing of the waveform. Another returns the
value and time of every local minimum and maximum of a waveform.

The smoothing operator is one method for reducing the waveform content of
higher order coefficients. A waveform is smoothed by retuming the local average of the
waveform over some prespecified time increment. Smoothing eliminates discontinuities




in a waveform and its derivatives. Since discontinuities tend to amplify the waveform
content of the higher order terms, removing the discontinuities should reduce the higher

order term waveform content.
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3.3.3 Jacobians

A Jacobian matrix contains the partial derivatives of the coefficients of one
waveform with respect to another waveform Here is a sample C structure to define a
Jacobian:

typedef struct Jacobian
{

struct Waveform *num; /* address of waveform in the
numerator of the partial
derivatives */

struct Waveform *den; /* address of waveform in the
denominator of the partial
derivatives */

long version; /* Version number of the
jacobian matrix */

long num _version; /* Version nbr of
numerator Waveform */

long den_version; /* Version nbr of
denominator Waveform */

void **j; /* array of jacobian elements

The first row index is for
an array of pcinters whose
elements are arrays with
the colum index */

char sj; /* Structural Jacobian Code */

struct Jacobian *next; /* address for linked list

of Jacobians */
}
JACOBIAN;

Jacobians are used in the process of solving simultaneous systems of waveform
equations through relaxation methods or through the Newton-Raphson Method. The
purpose of num_version and den_version is to record which versions of the numerator
and denominator waveforms the jacobian was calculated for. The element version is used
when several jacobians are combined and it is necessary to determine whether the
combined matrix must be recalculated.

In general, all operations defined for a waveform should also generate the jacobian of
the results with respect to the arguments. Through the use of the chain rule, the jacobian
matrix of the export variables of a device with respect to the device import variables can be
determined.

The structural jacobian code indicates the dependence and structure of the
jacobian matrix. Here is a list of the codes:
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Code |Type of Matrix ]I
0 Zero Matrix (all elements are always zero) -
I Identity Matrix (always the identity matrix)
D Diagonal Matrix (always a linear main diagonal matrix)
L Linear Matrix (The elements are always constant)
N Nonlinear Matrix (The elements may not be constants)
U Unknown (The dependence is unknown (treat as nonlinear))

The structural jacobian code along with the version numbers determines whether or
not a jacobian matrix needs to be recalcuated. If the structural jacobian is of type 0, I, D,
or L then the jacobian need not be reconstructed if the there is a version mismatch between
the waveform version and the jacobian version. If the structural jacobian of type N or U,
and there is a mismatch between the version numbers of the jacobian and the waveforms,
then the jacobian elements must be recalculated. After every recalculation, the version
numbers are updated. In this manner, only jacobian matrices with changing coefficients

are ever recalculated.

Technically, the structural jacobian codes depend on the waveform type used. In this
thesis however, all of the waveform types produce the same structural jacobian codes.

3.3.3.1 Jacobian Operators

Several operators for jacobian objects will prove useful in developing a simulation

environment. These operators include:

Addition and Subtraction

Identity and Zero Jacobian generators
Multiplication by a constant
Multiplication of two jacobians

Multiplication of a jacobian by a waveform

AN

Inverting a jacobian

If the waveform is described by an array of double precision floating point numbers,
the Jacobian coefficients can also be defined to be an array of double precision floating

point numbers. In this case, the above operations employ standard matrix manipulations.
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3.3.4 Waveform Examples

While the possibilities of waveform definitions is endless, this thesis will concentrate

on the following waveform types:

ll Waveform Type Code _ll

B Undefined 0 -
Data Series 1
Fourier Series 2
Legendre Series 3
Polynomials 4

Matlab Polynomials N
Chebyshev Series 6

The code in the above table refers to the value of element type in the WAVEFORM
structure. Appendix E describes these waveforms and their arithmetic in great detail.
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3.4 Conducting the Simulation

Once the physical system has been specified by device descriptions and network
equations, the solution for all of the system variables can be determined in several ways.
The method used in this thesis is the Newton-Raphson method with continuation
parameters.

3.4.1 Basic Newton-Raphson Algorithm

The Newton-Raphson method solves a system of nonlinear equations F(x,u) = 0,
F(Q e R", for the system variables x € R" with system input variables u € R"by first
linearizing the system of equations about a given guess for the solution x* then solving the
linear system to produce a new guess ¥**. This procedure is repeated until F( u) = 0 is
satisfied within a given tolerance. The sequence of points x* starting with k = 0 is called
the solution trajectory for x°. A converging solution trajectory eventually converges to a
solution while a diverging solution trajectory does not.

F(x,u) is linearized by taking the Taylor series expansion about the point x*:
F(e,u)=Fx" u)+J " u)x, +O(x - x)=0
x=x'+x,
where the Jacobian matrix J(x,,u) is defined by:

_ OF (x° u)

J(%u) .

Assuming the error O(x+x) is negligible and the Jacobian can be inverted, the

correction x, for a given guess x* is given by the linear approximation:
-1, & k
Xy =~=J (x,u)x

The correction is applied to x* to produce x**!, the value of x for the next iteration:

*r=xt+x,

Around each solution of F{x,u) = 0 for which the Newton-Raphson method reliably
converges, a region exists such that if a trajectory enters that region, it will never leave and
eventually converge to the solution. The size of this local convergence region depends on
the nonlinearity of the system. For purely linear systems, this region encompasses the
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entire " space. If the intitial guess falls within the local convergence region, the
Newton-Raphson method will by definition converge. If the initial guess falls outside the
local convergence region, one of several things can happen. First, the solution trajectory
could enter the local convergence region of a solution and converge on a solution. Second,
the Newton-Raphson method could fail due to a singular Jacobian. Third, the trajectory
could diverge and tend to infinity. Fourth, the trajectory could become cyclic where
£**1 = x* for k sufficiently large enough. Finally, the trajectory could enter a chaotic region
in which there is no solution but from which the trajectory never leaves and is not cyclic.

As an example, define F(x,u) to be the following 1x1 system:
Flx,u)=x-x

Figure 3.4.1-1: F(x,u) = x-x

b
1 Regions
: 1 4 2 15 3
5;
; F(‘)-X‘-X
R 1:-1
Rgg: 2: 0
Region 3: 1
Region 4: 1
Region 5: -1
Sxtat axat
1
The Jacobian matrix is:
2
J=[3x"-1]

The recursion formula for ¥** is given by:

kel _ _k (xk)s'xk
X =X T e
3(x) -1
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There are three solutions for this system and their local convergence regions are
given by:

Root Local Convergence Region J

x1="l
—~o<x%<—
x=0 I_ o 1
—" — < —
N35<<V3
xy=+1 1,
§<x < o0

In two other regions, the solution trajectory jumps to one of the local convergence
regions after one iteration:

W |

Root Convergence Region
X = 'l o 1
0.46560<x < 3 =0.57735
X3 = +l 1
V3= —-0.57735 < x° < -0.46560

In two other regions, the solution trajectory may jump to one of the local
convergence regions after several iterations or fail to converge:

Variable Behavior Region _]I

A / % = 0.44721 < x° < 0.46560

—0.46560 < x° < -

=-0.44721

On the boundaries for the above regions, the Newton-Raphson method fails:
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" x* Failure Mode ]I

1 |Singular Jacobian

+0.46560 |Singular Jacobian

,y\/—l— Cyclic Trajectory
N5

In the above analysis, no constraints were made in the speed of convergence or on
k+1

the size of x. If |x* [» 1 the speed of convergence will be very slow since x" 7 = §x’ and

the number of iterations / required will be about:

_log(1x* )

= k
~ogs) = >68logx

Furthermore, most machines have a limit as to the largest number which can be
represented. If an iteration causes x to exceed this number in magnitude, a floating point
overflow error will typically be generated. This phenomena is known as Newton Overflow
and has the effect of reducing the size of the convergence regions. For example, if x is
known to be bounded by the interval {-10 10], then x° should be restricted to the following

regions:

Root Convergence Region
x=-1 -10 <x® <-0.58904
0.46560 < x° < 0.56675
x: = 0 1 o 1
- §=—o.44721 <x< §=0.44721
x;=+1 -0.56675 < x° < —0.46560
0.58904 < x° < 10.0
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3.4.2 Continuation Methods with Newton-Raphson

The previous discussion indicates the need for careful selection of the initial guess x°.
The use of a continuation parameter in so called homotopy methods is one of the many
ways for attempting to generate x° within the convergence region of the desired solution.
In general, a function H(x,u,a) =0 is generated such that H(x,ul) = F(x,u) and
H(x,u,0) = G(x,u) where G(x,u) is a linear function in x. One common method of creating
H(x,u,0) is:

H(x,u,0)=oF(x,u)+(1-o0)G(x,u)

The problem now is to develop the linear function G(x,u). There are several
approaches which can be taken for each row G(x,u):

1. Linearize about a known operating point. This is equivelent to providing an
initial guess for each of the variables and using the Newton-Raphson method
directly.

2.  Use a least squares fit of a linear system over a known operating region of
F{x,u).

3.  Select G{x,u) such that the solution for H(x,u,0) = 0 is most likely to be within
the convergence region of F(x,u).

Once H(x,u,0) has been constructed, it can be used in several ways:

1.  Start with a=0 and obtain a solution to the linear system, then progressively
increment alpha by small amounts and solve the nonlinear system until o=1. The
rational is to employ the unbounded local region of convergence of the linear system
to move the initial guess into the local region of convergence for the next nonlinear
system formed by incrementing @.. As a is incremented, the solution for the previous
value of o is assumed to be within the local region of convergence for the present
value of alpha. Appendix B demonstrates this may not always happen due to
bifurcations of solutions as & is incremented.

2. Start with a=1 and attempt to obtain a solution to the nonlinear solution. If the
trajectory has not converged after n,,,, iterations, decrement o and attempt to find a
solution. Progressively decrement o until a solution is obtained, then increment o
using the solution of the previous value for a for the initial guess. This procedure

assumes the local convergence region for a given solution will increase as o is
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decremented. Eventually the local convergence region should grow large enough to
encompass even a poor guess for the solution. This procedure has the advantage over
the previous method in that it may avoid bifurcations which occur between 0 and the
minimum value for o used. However, the number of iterations for & may be larger.

Note that the value for n,,, as well as the convergence criteria may be a function of
a. There is no reason to obtain a highly accurate solution for intermediate values of a
since the only purpose is to move the initial guess for the next a iteration into the new
local region of convergence. Only when a=1 should the convergence criteria be enforced

for obtaining a highly accurate solution.
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3.4.3 Simulation Algorithm

The simulation algorithm employed by WAVESIM is conducted totally within the
MATLAB environment and is composed of four parts. The first part initializes all of the
simulation parameters. The second part performs the time increment control and has
embedded with in it the third part which is the sequential solving of each of the blocks.
The final part is composed mostly of plotting and storing the results of the simulation.

Figure 3.4.3-1: Simulation Flowchart

a Read )

Data
File

nf
)

Buitd
Structural
Jacobian

[
A\

Detect
Block
Sequence

:
)

Build
Reduced

Systenm
Save
L 4 Variables
Initialize
States
\_ J
Print
KEmthzé‘\ Error
t0, ttl Message
N
\ v

Stop

-77-




3.4.3.1 System Initialization

A number of parameters and arrays need initialization before the simulation can

commence. These parameters and arrays are:

n
N

wtype

t0
tl

sb n min
sb_n max

sb n data

sb_dt_init
sb_dt_optimum

sb_dt_min

sb_dt max

sb_dt_ave

Initial number of waveform coefficients
Actual number of waveform coefficients used

Waveform type indicator

Beginning time of simulation
Ending time of simulation

Minimum number of coefficients to use
Maximum number of coefficients to use

Number of points per waveform for plots

Initial time increment
Optimum time increment

Minimum time increment
Maximum time increment

Minimum time of interest (Averaging interval)

Break Points are user specified times for which waveform interval boundaries are

forced to occur. Break Points are completely optional and their inclusion is up to the

system modeler.

sb_bp
sb_bp_nbr

sys_node_ serial
sys node_ name

sb_alpha init

sb_dalpha init
sb_dalpha min
sb_dalpha max
sys Gmin

sys Rmin

Array of Break Points
Number of break points

Array of Node Serial Numbers
Array of Node Names

Initial Value of continuation parameter alpha for nonlinear
blocks
Initial Value of alpha increment

Minimum alpha increment
Maximum alpha increment

Array of Gmin values for all of the nodes
Array of Rmin values for all of the nodes

The index for sys_Gmin and sys_Rmin are the node numbers of the nodes they

apply to.
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sb_check_eqn err

sb_check_var_ err

sys_kcl err
sys_pot_err

sys nd_err

sys_fv_erx

sb_i kcl_erxr

sb_i_pot_err

sb i nd erx

sb i fv err

= 0 for don’t check equation error

= 1 for checking equation error

= 0 for don’t check max variable correction
= 1 for checking max variable correction

Array of maximum KCL errors for all nodes
Array of maximum Potential Differences for all nodes

Array of max corrections to Node Potentials for all nodes
Array of max corrections to Flow Variables for all nodes

Multiplier for maximum KCL error
for alpha less than 1

Multiplier for maximum Potential Difference
for alpha less than 1

Multiplier for max correction to node potential
for alpha less than 1

Mutltiplier for max correction to flow variable
for alpha less than 1

The index for the above eight arrays are the node numbers of the nodes they apply

to.

sb_maxcnt

sb_i maxcnt

sb_div_start cnt

sb_div _max cnt

sb_i div erxrr
sb_max wc
sb_nbr_wc

sb mult wc

sys_pot scale
sys flow_scale

Maximum number of iterations for alpha = 1
Maximum number of iterations for alpha < 1

Number of iterations to skip before checking
for divergence

Maximum number of diverging iterations before
assume system is diverging

Multiplier of errors for ignoring diverging check

Maximum waveform content of a waveform
Number of coefficients to apply waveform content to
Multiplier to sb_max_wc for decrementing N

Array of Scaling factors for node potentials
Array of Scaling factors for flows attached to nodes

The index for sys_pot_scale and sys_flow_scale are the node numbers of the

nodes they apply to.

dev_par name
dev_s0_name

Device parameter arrays: name is the device name
Device state initial value array:
name is the device name
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ivar nd _nbr

ivart_nd_nbr

ivar_£v_name

ivart_f£v_name

his N

his col

his nd_nbr

his_fv_name

his s name

blk_ nbr nrow
blk_ nbr ncol

blk nbr_ row_sys
blk nbr col_ sys

blk_nabr linear_ flag

Initial guesses for node potentials:
nbr is the node serial number
Waveform type for initial guess
nbr is the node serial number
Initial guess for flow variables:
name is the variable name
Waveform type for initial guess
name is the variable name

Matrix of time increment end points
First row is beginning of intervals
Second row is end of intervals
Columns are waveform interval index

Vector of number of coefficients in waveforms for each
waveform interval

The waveform interval index. After simulation this equals
the number of columns in history arrays

Matrix of Node Potential waveforms. Each column
corresponds to the waveform for the node potential over a
given waveform interval. nbr is the node serial number

Matrix of Import Flow Variable waveforms. Each column
corresponds to the waveform for the impont flow variable
over a given waveform interval. name is the variable name

Matrix of Device name state values. The first column
corresponds to the initial state values with subsequent
columns corresponding to the state values at the end of
waveform intervals. Note this matrix has 1 more column
than all the other history arrays.

Number of rows in block nbr

Number of columns in block nbr

Cross Reference of Block nbr rows to System Rows

Cross Reference of Block nbr columns to System Columns

= 0 if block nbr is nonlinear
=1 if block nbr is linear
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Time Increment Initialization

ddt Actual time increment
tto Beginning of current waveform interval
tel End of current waveform interval

ddt, tt0, and tt1 are initialized according to the following equations:

ddt = sb_dt_init
tt0 = t0

ttl = minimum of:

t0 + ddt
t1
sb_bp(1)
cnt_tot Set to zero: Total number of Jacobian inverses
his_flops Number of floating point operations used
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3.4.3.2 Time Loop
Truncation Error Control

The simulation time interval between t0 and t1 may be divided into a number of
waveform intervals to improve the truncation error of the system variable waveforms. In
general, truncation error can be reduced by either increasing N or by decreasing the
waveform interval tt1 - tt0. Within WAVESIM, the general strategy for dealing with
too large of a truncation error is to increase the number of coefficients N if the waveform
interval is less than sb_dt_optimum and shorten the waveform time interval if greater
than sb_dt_optimum. In general, the strategy is to minimimize ¥ while maximizing the
waveform interval subject to the constraint that the truncation error is within tolerances.
Finding the optimum combination of waveform intervals and number of coefficients 1s

not obvious and much work remains for developing better algorithms.
3.4.3.2.1 Time Loop iteration initialization

The simulation time loop continues as long as tt0 < t1. The beginning of each

iteration begins with the definition of the following arrays:

tt

ii

[tt0 ttl sb_dt_ave]
Identity Matrix of size N
Zero Matrix of size Ny

Variable Initial Guesses

Next, initial guesses are provided for all system variables (var_nd_nbr and
var_fv_name) by converting the waveforms ivar_nd_nbr of type ivart_nd abr and
waveforms ivar_fv_name of type ivart_£v_name into waveforms of type wtype and

size N.

In the present incarnation of WAVESIM, the same waveform is used as the initial
guess for all waveform time intervals regardless of the values for tt0 and tti.
Normally, a constant value is specified. A better method would allow the user to specify
an actual guess as to the waveform history as a function of time. The time loop iteration
initialization would then have the responsibility of converting the waveform data as
provided by the user into a waveform of type wtype and size N over the interval between
tt0 and tt1. Providing an initial guess for the wavefo.m history of all the variables
would allow for example, a linear model of a system be run first to generate the initial

guess for a nonlinear model of the same system. Convergence of the nonlinear system
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should be greatly accelerated for many systems. Parameter sensitivity studies would
also be greatly accelerated if the parameter variations are not expected to cause major

changes in system performance.

Failure Flags

Two final variables, converge_failure and fatal_error are initialized to zero.
converge failure is set to one by a block if convergence failed for that block or if one
of the block waveforms has too large of a harmonic content. Convergence could fail if
the number of iterations exceeded the maximum allowed and the alpha increment is
smaller than the minimum allowed. converge_failure is used to indicate the following
blocks should not be solved because previous blocks could not be solved. fatal_error
is set to one if convergence cannot be obtained even when N is equal to or greater than
the maximum value sb_n max and the time increment is equal to or smaller than the

minimum value sb_dt_min. If fatal_error is set, the simulation fails.

.83 .-




3.4.3.2.2 Solving the Blocks

The blocks are solved sequentially in the order of their detection in the system
reduction procedure. If converge_failure is nonzero, a previous block could not be
solved for the given time increment and number of coefficients. For this reason, a block

is not solved if converge_failure is nonzero.

Figure 3.4.3-2: Solving the Block
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3.4.3.2.2.1 Block Initialization

Each block requires the initialization of several arr«ys and variables before the
block can be solved:
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blk nbr max eqnerr
blk_nbr max varcor

blk_nbr imax egnerr

blk nbr imax varcor

blk_nbr_cat

blk_nbr__cnt_div

blk_nbr alpha

blk_nbr_dalpha

good_alpha

good_var_nd_nbr

good var_ fv_name

blk_nbr trec

blk nbr_ivc

div_cnt

div_err

Array of maximum errors for the block equations
Array of maximum variable corrections for the block
variables

Array of multipliers to blk_nbr max eqnerr for
alpha<1
Array of multipliers to blk_nbr max_varcor for
alpha<1

Number of iterations (initialized to 0)
Number of diverging iterations (initialized to 0)

Block continuation parameter.
= 1 if linear block
= sb_alpha_init if nonlinear block

Block continuation parameter increment

= sb_dalpha init

Last value of alpha for which block converged.
Initialized to -1

Last value of node nbr potential for which block
converged. Initialized to var_nd_nbr

Last value of import flow name for which block
converged. Initialized to var_£v_name

Recommended recalculation time for block
Initialized to tt1

Array of indexes in block variable array for which the
variable correction was greater than allowed.
Initialized to an empty array.

Number of diverging iterations, set to 0

Maximum relative error of previous iteration
Initially set to 0.
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3.4.3.2.2.2 Continuation Parameter Loop

The block continuation parameter loop continues as long as blk_nbr_alpha < 1.
Within this loop, the following procedures occur:

1.  Import Variables for all associated devices specified

2.  Device Objects called to generate
A. Expornt Variables
B. Device Jacobian Matrix
C. State values at time tt1
D. Recommended recalculation time

3. Block recalculation time calculated
4. KCL and Potential Difference Equation Errors calculated

5.  Errors Scaled and compared to maximum limits
if good, solution saved and blk_nbr alpha incremented
as necessary.

6. Iterations counted and compared to maximum limit
blk_nbr alpha decremented and variables reset
as necessary.

7.  Block Jacobian Matrix assembled and scaled
8. Variable Corrections Calculated

9.  System variables corrected
3.4.3.2.2.2.1 Device Import Variable specification

The matrix dev_i_name is generated for each device name where the columns
are the waverorm coefficients for each of the device import variables. Each column of
the dev_i_name matrix is one of the system variables, hence all are available.

3.4.3.2.2.2.2 Call Device Objects

Each of the device objects associated with the block is provided with the

following information:
wtype Waveform type

dev_i name Device name import variable matrix
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dev_par_name Device name parameter array
dev_s0_name  Device name state initial value tt0 array

te Time structure
blk_nbr alpha Block abr Continuation Parameter

From this information, each of the device objects generates the following
dev_e_name Device name export variable matrix

dev_j_name Device name jacobian matrix

dev_sl_name  Device name state final value tt1 array

dev_tr name  Device name recommended recalculation structure
= [ntl ntt] where
nt1 = recommended tt1 for present interval
or set to tt1 if no recommendation
att = recommended tt1 for next interval
or set to tt 0 if no recommendation

3.4.3.2.2.2.3 Recommended Recalculation Time

The block recommended recalculation tine blk_nbr trec is set to the
minimum value of all the at1 values from all of the devices associated with the block.
If convergence fails blk_nbr_trec is used to generate a new value for tt1.

Similarly, blk_nbr ntrec is set to the minimum value of all the ntt values
greater than tt1 from all of the devices associated with the block. For a successful
convergence, blk_nbr ntrec is used to help generate a new vatue for tt1 for the

next waveform interval.
3.4.3.2.2.2.4 Equation Errors

For each of the node ad KCL equations associated with block abr, an error
variable blk_nbr kcl_nd is generated by adding the flow variables of the attached
terminals to the flow through Gmin. Likewise, for each of the export potential name
Potential Difference equations associated with block abr, an error variable
blk_nbr pot name is generated by subtracting from the node potential waveform, the
waveform of the export potential as well as the contribution from Rmin

blk_nbr kcl_nd = I dev_e_ name(:,col) + I var_fv_vname +
var_nd at X Gmin
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blk_nbr pot_vname = var_nd nd - dev_e name(:,col) -
dev_x name(:,col) X Rmin

where
nbr Block Number
nd Node Serial Number
name Device name
vname Variable name

(:,co1) The appropriate column from the matrix
x Either e or i depending on associated flow variable
being an export or import variable
The KCL equation errors are raultiplied by the appropriate flow variable scaling factor
from the sys_flow_scale array while the Potential Difference equation errors are
multiplied by the appropriate potential scaling factor from the sys_pot_scale array.
Once scaled, the error vectors are assembled into a block error vector blk_nbr err.

3.4.3.2.2.2.5 Error Criteria Check

Applying Error Criteria

If blk_nbr_alpha 2 1 then blk_nbr_ier is filled with the indexes of the rows
of blk_nbr err which are greater in magnitude than the corresponding rows of
blk_nbr max eqmerr. In the same manner, blk_nbr_rel err is set equal to the
absolute value of blk_nbr_err divided by blk_nbr max_eqnerr.

If b1k_nbr_alpha < 1 then blk_nbr_ier is filled with the indexes of the rows
of »lk_nbr_err whilli are greater in magnitude than the corresponding rows of
blk_nbr imax_eqnerr. Similarly, blk nbr rel err is set equal to the absolute
value of blk_nbr_err divided by blk_nbr imax eqmerr.

Divergence Check

On the first iteration for a given value blk_nbr alpha, div_ent is initialized to
0. For the first sb_div_start_cnt - 1 iterations, div_err is set to the maximum
value of blk_nbr_rel_err. On subsequent iterations, if the maximum value of
blk_nbr rel_err is smaller than div_err then div_cnt is reset to 0, otherwise
div_cnt is incremented. In any case div_err is set to the maximum value of
blk_nbr rel err. If div_cnt > sb_div_max cat then the algorithm assumes the
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block is diverging for the given value of blk_nbr alpha. The failure to converge

condition is indicated by setting blk_nbr_cnt = maxcnt: either sb_i_maxcnt if
blk_nbr_ alpha < 10r sb_maxcat if blk_nbr_alpha 2 1.

Block Convergence Success

If blk_nbr ier is the empty set or sb_check eqn err is 0, and
blk_nbr alpha 2 1 and blk_abr ivc is the empty set, then the block solving
algorithm has been completed and the continuation parameter loop is broken. The
algorithm proceeds to checking the truncation error for the system variables associated
with the block.

Increment Continuation Parameter

If blk_nbr ier is the empty set or sb_check eqn err is 0, and
blk_nbr_alpha < 1 and blk_nbr_ivc is the empty set, then it is time to increment
the continuation parameter blk_nbr_alpha. First however, the current value of all
the variables associated with the block are copied into good var_nd_nd or
good_var_£v_name. blk_nbr_alpha is copied into good_alpha. The variables and
continuation parameter must be saved because it may be necessary to restore the
variables if the block fails to converge with the next continuation parameter value.
blk_nbr_alpha is then set equal to the minimum of 1 and
blk_nbr alpha + blk_nbr dalpha and the continuation parameter loop is repeated.

Iteration Count: Decrement Continuation Parameter

If the error is still too large, corrections to the system variables associated with
the block must be generated. But first, the number of iterations blk_nbr_cnt must be
incremented and compared to the maximum allowed maxent: either sb_i_maxcat if
blk_nbr alpha < 1 Or sb_maxcnt if blk_nbr alpha > 1. If the limit has been
exceeded, and one of the devices has recommended a value for blk_nbr trec less
than tt1, then converge_failure is set to 1 and attempts to solve the block cease. If
the limit has been exceeded and blk_nbr_trec equals tti, the block is recalculated
with a decremented blk_nbr_alpha which is set to the maximum of:

(blk_nbr alpha 4 good_alpha) / 2
blk_nbr alpha - blk_nbr_dalpha
0
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If b1x_nbr_alpha has been decremented, the system variables associated with
the block must be reset to the values stored in either good var_nd _ad or

good_var fv_name.
Block Convergence Failure

If b1k_nbr_alpha - good alpha < sb_dalpha min then the block has failed
to converge and nothing more can be done on the block level. The variable trec is
set equal to blk_nbr_trec and the converge failure flag is set to 1. This is a
signal to the system to not solve any more blocks and either adjust the value of tt1 or
adjust the number of coefficients N before trying to solve the system again.

3.4.3.2.2.2.6 Assemble Jacobian
Jacobian Construction

If the error is too large, but the maximum number of iterations maxcnt has not
been exceeded, the block jacobian matrix must be calculated. The block jacobian
matrix blk_nbr_j is constructed in the same manner as the system structural jacobian
was previously constructed with the exception that now the variables and equations
are only those which are p.st of the block and the matrix elements are submatrices
instead of structural jacobian codes.

Jacobian Scaling

Once the block jacobian has been assembled, it is scaled by dividing each of the
columns by the appropriate element of either the sys_flow_scale (if the column
corresponds to an import flow variable) or sys_pot_scale (if the column corresponds
to a node potential) vectors. Likewise, rows of the block jacobian are multiplied by
the appropriate element of either the sys_flow_scale (if the row corresponds to a
KCL equation) or sys_pot_scale (if the row corresponds to a Potential Difference
equation) vectors. Scaling is performed to normalize all of the variables and
hopefully improve the accuracy of the numerical computations required for solving

the variable corrections.

Correction Vector Calculation

The variable correction vector blk_nbr_dlta is generated by solving the matrix

equation:




blk_nbr_j blk_nbr dlta = blk_nbr err
The most direct method (and one of the least numerically efficient method) of
calculating blk_nbr dlta is to invert blk_nbzr_j and multiply by blk_nbr err.
Relaxation methods and Gaussian elimination with back substitution are other means

to the same end.

Singular Jacobian

If blk_nbz_j is singular, blk_nbr_dlta can not be calculated and in the present
incarnation of WAVESIM, the simulation fails. Future versions should include an
algorithm for attempting to recover from the singular jacobian.

3.4.3.2.2.2.7 Correct Variables

Each of the system variables associated with the block are corrected by
subtracting the appropriate rows of blk_nbr dita divided by the corresponding
element of the scaling